Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Physiol Genomics ; 56(5): 397-408, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38497119

ABSTRACT

Feed efficiency is a trait of interest in pigs as it contributes to lowering the ecological and economical costs of pig production. A divergent genetic selection experiment from a Large White pig population was performed for 10 generations, leading to pig lines with relatively low- (LRFI) and high- (HRFI) residual feed intake (RFI). Feeding behavior and metabolic differences have been previously reported between the two lines. We hypothesized that part of these differences could be related to differential sensing and absorption of nutrients in the proximal intestine. We investigated the duodenum transcriptome and DNA methylation profiles comparing overnight fasting with ad libitum feeding in LRFI and HRFI pigs (n = 24). We identified 1,106 differentially expressed genes between the two lines, notably affecting pathways of the transmembrane transport activity and related to mitosis or chromosome separation. The LRFI line showed a greater transcriptomic response to feed intake than the HRFI line. Feed intake affected genes from both anabolic and catabolic pathways in the pig duodenum, such as rRNA production and autophagy. Several nutrient transporter and tight junction genes were differentially expressed between lines and/or by short-term feed intake. We also identified 409 differentially methylated regions in the duodenum mucosa between the two lines, while this epigenetic mark was less affected by feeding. Our findings highlighted that the genetic selection for feed efficiency in pigs changed the transcriptome profiles of the duodenum, and notably its response to feed intake, suggesting key roles for this proximal gut segment in mechanisms underlying feed efficiency.NEW & NOTEWORTHY The duodenum is a key organ for the hunger/satiety loop and nutrient sensing. We investigated how the duodenum transcriptome and DNA methylation profiles are affected by feed intakes in pigs. We observed thousands of changes in gene expression levels between overnight-fasted and fed pigs in high-feed efficiency pig lines, but almost none in the related low-feed efficiency pig line.


Subject(s)
DNA Methylation , Transcriptome , Swine/genetics , Animals , Transcriptome/genetics , DNA Methylation/genetics , Eating/genetics , Gene Expression Profiling , Duodenum , Animal Feed
2.
Viruses ; 16(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38543758

ABSTRACT

Botryosphaeriaceae are fungi involved in the decay of various woody species, including the grapevine, leading to significant production losses. This fungal family is largely ubiquitous, and seven species of Botryosphaeriaceae have been identified in French vineyards, with variable levels of aggressiveness, both in vitro and in planta. Mycoviruses can impact the life traits of their fungal hosts, including aggressiveness, and are one of the factors influencing fungal pathogenicity. In this study, the RNA mycovirome of fifteen Botryosphaeriaceae isolates was characterized through the high-throughput sequencing of double-stranded RNA preparations from the respective samples. Eight mycoviruses were detected, including three potential novel species in the Narnaviridae family, as well as in the proposed Mycobunyaviridae and Fusagraviridae families. A large collection of Botryosphaeriaceae isolates was screened using RT-PCR assays specific for 20 Botryosphaeriaceae-infecting mycoviruses. Among the mycoviruses detected, some appeared to be specialists within a single host species, while others infected isolates belonging to multiple Botryosphaeriaceae species. This screening allowed us to conclude that one-third of the Botryosphaeriaceae isolates were infected by at least one mycovirus, and a significant proportion of isolates (43.5%) were found to be coinfected by several viruses, with very complex RNA mycoviromes for some N. parvum isolates.


Subject(s)
Ascomycota , Fungal Viruses , RNA Viruses , Humans , Fungal Viruses/genetics , Plant Diseases/microbiology , Phylogeny , RNA Viruses/genetics , RNA, Double-Stranded/genetics
3.
PeerJ ; 11: e15124, 2023.
Article in English | MEDLINE | ID: mdl-37070089

ABSTRACT

Basic knowledge on the biology and epidemiology of equine strongylid species still needs to be improved to contribute to the design of better parasite control strategies. Nemabiome metabarcoding is a convenient tool to quantify and identify species in bulk samples that could overcome the hurdle that cyathostomin morphological identification represents. To date, this approach has relied on the internal transcribed spacer 2 (ITS-2) of the ribosomal RNA gene, with a limited investigation of its predictive performance for cyathostomin communities. Using DNA pools of single cyathostomin worms, this study aimed to provide the first elements to compare performances of the ITS-2 and a cytochrome c oxidase subunit I (COI) barcode newly developed in this study. Barcode predictive abilities were compared across various mock community compositions of two, five and 11 individuals from distinct species. The amplification bias of each barcode was estimated. Results were also compared between various types of biological samples, i.e., eggs, infective larvae or adults. Bioinformatic parameters were chosen to yield the closest representation of the cyathostomin community for each barcode, underscoring the need for communities of known composition for metabarcoding purposes. Overall, the proposed COI barcode was suboptimal relative to the ITS-2 rDNA region, because of PCR amplification biases, reduced sensitivity and higher divergence from the expected community composition. Metabarcoding yielded consistent community composition across the three sample types. However, imperfect correlations were found between relative abundances from infective larvae and other life-stages for Cylicostephanus species using the ITS-2 barcode. While the results remain limited by the considered biological material, they suggest that additional improvements are needed for both the ITS-2 and COI barcodes.


Subject(s)
DNA Barcoding, Taxonomic , Animals , Horses/genetics , DNA, Ribosomal/genetics , DNA Barcoding, Taxonomic/methods , Polymerase Chain Reaction
4.
Science ; 379(6632): 572-575, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36758078

ABSTRACT

Accurate species phylogenies are a prerequisite for all evolutionary research. Teleosts are the largest and most diversified group of extant vertebrates, but relationships among their three oldest extant lineages remain unresolved. On the basis of seven high-quality new genome assemblies in Elopomorpha (tarpons, eels), we revisited the topology of the deepest branches of the teleost phylogeny using independent gene sequence and chromosomal rearrangement phylogenomic approaches. These analyses converged to a single scenario that unambiguously places the Elopomorpha and Osteoglossomorpha (arapaima, elephantnose fish) in a monophyletic sister group to all other teleosts, i.e., the Clupeocephala lineage (zebrafish, medaka). This finding resolves more than 50 years of controversy on the evolutionary relationships of these lineages and highlights the power of combining different levels of genome-wide information to solve complex phylogenies.


Subject(s)
Biological Evolution , Fishes , Animals , Eels/classification , Eels/genetics , Fishes/classification , Fishes/genetics , Genome , Phylogeny , Zebrafish/classification , Zebrafish/genetics
5.
iScience ; 26(2): 106044, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36818309

ABSTRACT

The nature and strength of interactions entertained among helminths and their host gut microbiota remain largely unexplored. Using 40 naturally infected Welsh ponies, we tracked the gut microbiota-cyathostomin temporal dynamics and stability before and following anthelmintic treatment and the associated host blood transcriptomic response. High shedders harbored 14 species of cyathostomins, dominated by Cylicocyclus nassatus. They exhibited a highly diverse and temporal dynamic gut microbiota, with butyrate-producing Clostridia likely driving the ecosystem steadiness and host tolerance toward cyathostomins infection. However, anthelmintic administration sharply bent the microbial community. It disrupted the ecosystem stability and the time-dependent network of interactions, affecting longer term microbial resilience. These observations highlight how anthelmintic treatments alter the triangular relationship of parasite, host, and gut microbiota and open new perspectives for adding nutritional intervention to current parasite management strategies.

6.
Parasitology ; 149(11): 1439-1449, 2022 09.
Article in English | MEDLINE | ID: mdl-35929352

ABSTRACT

Alternative strategies to chemical anthelmintics are needed for the sustainable control of equine strongylids. Bioactive forages like sainfoin (Onobrychis viciifolia) could contribute to reducing drug use, with the first hints of in vitro activity against cyathostomin free-living stages observed in the past. We analysed the effect of a sainfoin-rich diet on cyathostomin population and the efficacy of oral ivermectin treatment. Two groups of 10 naturally infected horses were enrolled in a 78-day experimental trial. Following a 1-week adaptation period, they were either fed with dehydrated sainfoin pellets (70% of their diet dry matter) or with alfalfa pellets (control group) for 21-days. No difference was found between the average fecal egg counts (FECs) of the two groups, but a significantly lower increase in larval development rate was observed for the sainfoin group, at the end of the trial. Quantification of cyathostomin species abundances with an ITS-2-based metabarcoding approach revealed that the sainfoin diet did not affect the nemabiome structure compared to the control diet. Following oral ivermectin treatment of all horses on day 21, the drug concentration was lower in horses fed with sainfoin, and cyathostomin eggs reappeared earlier in that group. Our results demonstrated that short-term consumption of a sainfoin-rich diet does not decrease cyathostomin FEC but seems to slightly reduce larval development. Consumption of dehydrated sainfoin pellets also negatively affected ivermectin pharmacokinetics, underscoring the need to monitor horse feeding regimes when assessing ivermectin efficacy in the field.


Subject(s)
Anthelmintics , Fabaceae , Animals , Anthelmintics/pharmacology , Diet/veterinary , Fabaceae/chemistry , Feces , Horses , Ivermectin/pharmacology , Larva , Parasite Egg Count/veterinary
7.
Mol Ecol Resour ; 22(7): 2685-2700, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35569134

ABSTRACT

The Pacific halibut (Hippoglossus stenolepis) is a key species in the North Pacific Ocean and Bering Sea ecosystems, where it also supports important fisheries. However, the lack of genomic resources limits our understanding of evolutionary, environmental and anthropogenic forces affecting key life history characteristics of Pacific halibut and prevents the application of genomic tools in fisheries management and conservation efforts. In the present study, we report on the first generation of a high-quality chromosome-level assembly of the Pacific halibut genome, with an estimated size of 602 Mb, 24 chromosome-length scaffolds that contain 99.8% of the assembly and a N50 scaffold length of 27.3 Mb. In the first application of this important resource, we conducted genome-wide analyses of sex-specific genetic variation by pool sequencing and characterized a potential sex-determining region in chromosome 9 with a high density of female-specific SNPs. Within this region, we identified the bmpr1ba gene as a potential candidate for master sex-determining (MSD) gene. bmpr1ba is a member of the TGF-ß family that in teleosts has provided the largest number of MSD genes, including a paralogue of this gene in Atlantic herring. The genome assembly constitutes an essential resource for future studies on Pacific halibut population structure and dynamics, evolutionary history and responses to environmental and anthropogenic influences. Furthermore, the genomic location of the sex-determining region in Pacific halibut has been identified and a putative candidate MSD gene has been proposed, providing further support for the rapid evolution of sex-determining mechanisms in teleost fish.


Subject(s)
Flounder , Animals , Chromosomes , Ecosystem , Female , Fishes/genetics , Flounder/genetics , Genome-Wide Association Study , Genomics , Male
8.
Sci Rep ; 11(1): 21544, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732792

ABSTRACT

Arapaima gigas is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified id2bbY, a duplicated copy of the inhibitor of DNA binding 2b (id2b) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for id2bbY was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog, id2ba, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm id2bbY as a prime candidate for the master sex-determiner. Acting through the TGFß signaling pathway, id2bbY from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes.


Subject(s)
Fishes/genetics , Fishes/physiology , Gene Duplication , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/physiology , Sex Chromosomes , Animals , Chromosome Mapping , Conservation of Natural Resources , DNA/metabolism , Evolution, Molecular , Female , Fisheries , Genetic Markers/genetics , Genotype , Male , Phenotype , Phylogeny , Polymerase Chain Reaction , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Analysis, DNA , Y Chromosome
9.
Acta Diabetol ; 58(7): 881-897, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33723651

ABSTRACT

AIMS: Liraglutide controls type 2 diabetes (T2D) and inflammation. Gut microbiota regulates the immune system and causes at least in part type 2 diabetes. We here evaluated whether liraglutide regulates T2D through both gut microbiota and immunity in dysmetabolic mice. METHODS: Diet-induced dysmetabolic mice were treated for 14 days with intraperitoneal injection of liraglutide (100 µg/kg) or with vehicle or Exendin 4 (10 µg/kg) as controls. Various metabolic parameters, the intestinal immune cells were characterized and the 16SrDNA gene sequenced from the gut. The causal role of gut microbiota was shown using large spectrum antibiotics and by colonization of germ-free mice with the gut microbiota from treated mice. RESULTS: Besides, the expected metabolic impacts liraglutide treatment induced a specific gut microbiota specific signature when compared to vehicle or Ex4-treated mice. However, liraglutide only increased glucose-induced insulin secretion, reduced the frequency of Th1 lymphocytes, and increased that of TReg in the intestine. These effects were abolished by a concomitant antibiotic treatment. Colonization of germ-free mice with gut microbiota from liraglutide-treated diabetic mice improved glucose-induced insulin secretion and regulated the intestinal immune system differently from what observed in germ-free mice colonized with microbiota from non-treated diabetic mice. CONCLUSIONS: Altogether, our result demonstrated first the influence of liraglutide on gut microbiota and the intestinal immune system which could at least in part control glucose-induced insulin secretion.


Subject(s)
Gastrointestinal Microbiome/drug effects , Immune System/drug effects , Insulin Secretion/drug effects , Intestinal Mucosa/drug effects , Liraglutide/pharmacology , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL
10.
Elife ; 102021 01 28.
Article in English | MEDLINE | ID: mdl-33506762

ABSTRACT

The understanding of the evolution of variable sex determination mechanisms across taxa requires comparative studies among closely related species. Following the fate of a known master sex-determining gene, we traced the evolution of sex determination in an entire teleost order (Esociformes). We discovered that the northern pike (Esox lucius) master sex-determining gene originated from a 65 to 90 million-year-old gene duplication event and that it remained sex linked on undifferentiated sex chromosomes for at least 56 million years in multiple species. We identified several independent species- or population-specific sex determination transitions, including a recent loss of a Y chromosome. These findings highlight the diversity of evolutionary fates of master sex-determining genes and the importance of population demographic history in sex determination studies. We hypothesize that occasional sex reversals and genetic bottlenecks provide a non-adaptive explanation for sex determination transitions.


Subject(s)
Esocidae/genetics , Gene Duplication , Sex Chromosomes/genetics , Sex Determination Processes/physiology , Animals , Female , Male , Phylogeny
11.
Sci Rep ; 10(1): 17693, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077766

ABSTRACT

Rainbow trout has a male heterogametic (XY) sex determination system controlled by a major sex-determining gene, sdY. Unexpectedly, a few phenotypically masculinised fish are regularly observed in all-female farmed trout stocks. To better understand the genetic determinism underlying spontaneous maleness in XX-rainbow trout, we recorded the phenotypic sex of 20,210 XX-rainbow trout from a French farm population at 10 and 15 months post-hatching. The overall masculinisation rate was 1.45%. We performed two genome-wide association studies (GWAS) on a subsample of 1139 individuals classified as females, intersex or males using either medium-throughput genotyping (31,811 SNPs) or whole-genome sequencing (WGS, 8.7 million SNPs). The genomic heritability of maleness ranged between 0.48 and 0.62 depending on the method and the number of SNPs used for the estimation. At the 31K SNPs level, we detected four QTL on three chromosomes (Omy1, Omy12 and Omy20). Using WGS information, we narrowed down the positions of the two QTL detected on Omy1 to 96 kb and 347 kb respectively, with the second QTL explaining up to 14% of the total genetic variance of maleness. Within this QTL, we detected three putative candidate genes, fgfa8, cyp17a1 and an uncharacterised protein (LOC110527930), which might be involved in spontaneous maleness of XX-female rainbow trout.


Subject(s)
Genotype , Oncorhynchus mykiss/genetics , Sex Determination Processes , Whole Genome Sequencing , Animals , Female , Male , Phenotype
12.
Genetics ; 214(1): 193-209, 2020 01.
Article in English | MEDLINE | ID: mdl-31704715

ABSTRACT

Fish are known for the outstanding variety of their sex determination mechanisms and sex chromosome systems. The western (Gambusia affinis) and eastern mosquitofish (G. holbrooki) are sister species for which different sex determination mechanisms have been described: ZZ/ZW for G. affinis and XX/XY for G. holbrooki Here, we carried out restriction-site associated DNA (RAD-) and pool sequencing (Pool-seq) to characterize the sex chromosomes of both species. We found that the ZW chromosomes of G. affinis females and the XY chromosomes of G. holbrooki males correspond to different linkage groups, and thus evolved independently from separate autosomes. In interspecific hybrids, the Y chromosome is dominant over the W chromosome, and X is dominant over Z. In G. holbrooki, we identified a candidate region for the Y-linked melanic pigmentation locus, a rare male phenotype that constitutes a potentially sexually antagonistic trait and is associated with other such characteristics, e.g., large body size and aggressive behavior. We developed a SNP-based marker in the Y-linked allele of GIPC PDZ domain containing family member 1 (gipc1), which was linked to melanism in all tested G. holbrooki populations. This locus represents an example for a color locus that is located in close proximity to a putative sex determiner, and most likely substantially contributed to the evolution of the Y.


Subject(s)
46, XX Testicular Disorders of Sex Development/genetics , Cyprinodontiformes/genetics , Pigmentation/genetics , Sex Chromosomes , Sex Determination Processes , X Chromosome , Y Chromosome , Animals , Cell Lineage , Chromosome Mapping , Cyprinodontiformes/classification , Female , Genetic Linkage , Genome , Male , Phenotype , Phylogeny
13.
J Am Heart Assoc ; 8(19): e011797, 2019 10.
Article in English | MEDLINE | ID: mdl-31566105

ABSTRACT

Background The role of bacteria on the onset of cardiovascular disease has been suggested. Reciprocally, increased intestinal bacterial translocation and bloodstream infection are common comorbidities associated with heart failure and myocardial infarction (MI). In this context, the aim of this study was to analyze the blood microbiome in patients shortly after acute myocardial infarction. Methods and Results We carried out a case control study comparing 103 patients at high cardiovascular risk but free of coronary disease and 99 patients who had an MI. The blood microbiome was analyzed both quantitatively by 16S quantitative polymerase chain reaction and qualitatively by 16S targeted metagenomic sequencing specifically optimized for blood samples. A significant increase in blood bacterial 16S rDNA concentration was observed in patients admitted for MI. This increase in blood bacterial DNA concentration was independent of post-MI left ventricular function and was more marked in patients with low-density lipoprotein cholesterol ≥1 g/L. In addition, differences in the proportion of numerous bacterial taxa in blood were significantly modified with the onset of MI, thus defining a blood microbiota signature of MI. Among the bacterial taxa whose proportions are decreased in patients with MI, at least 6 are known to include species able to metabolize cholesterol. Conclusions These results could provide the basis for the identification of blood microbiome-based biomarkers for the stratification of MI patients. Furthermore, these findings should provide insight into the mechanism underlying the negative correlation reported between low-density lipoprotein cholesterol concentration and the prognosis at the acute onset of MI and mortality. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT02405468.


Subject(s)
Bacteria/genetics , Cholesterol, LDL/blood , DNA, Bacterial/genetics , Dyslipidemias/blood , Microbiota , Myocardial Infarction/blood , Myocardial Infarction/microbiology , Aged , Bacteria/classification , Bacteria/metabolism , Biomarkers/blood , Case-Control Studies , DNA, Bacterial/blood , Dyslipidemias/diagnosis , Female , Humans , Male , Metagenomics , Middle Aged , Myocardial Infarction/diagnosis , Pilot Projects , Ribotyping
14.
PLoS Genet ; 15(8): e1008013, 2019 08.
Article in English | MEDLINE | ID: mdl-31437150

ABSTRACT

Teleost fishes, thanks to their rapid evolution of sex determination mechanisms, provide remarkable opportunities to study the formation of sex chromosomes and the mechanisms driving the birth of new master sex determining (MSD) genes. However, the evolutionary interplay between the sex chromosomes and the MSD genes they harbor is rather unexplored. We characterized a male-specific duplicate of the anti-Müllerian hormone (amh) as the MSD gene in Northern Pike (Esox lucius), using genomic and expression evidence as well as by loss-of-function and gain-of-function experiments. Using RAD-Sequencing from a family panel, we identified Linkage Group (LG) 24 as the sex chromosome and positioned the sex locus in its sub-telomeric region. Furthermore, we demonstrated that this MSD originated from an ancient duplication of the autosomal amh gene, which was subsequently translocated to LG24. Using sex-specific pooled genome sequencing and a new male genome sequence assembled using Nanopore long reads, we also characterized the differentiation of the X and Y chromosomes, revealing a small male-specific insertion containing the MSD gene and a limited region with reduced recombination. Our study reveals an unexpectedly low level of differentiation between a pair of sex chromosomes harboring an old MSD gene in a wild teleost fish population, and highlights both the pivotal role of genes from the amh pathway in sex determination, as well as the importance of gene duplication as a mechanism driving the turnover of sex chromosomes in this clade.


Subject(s)
Anti-Mullerian Hormone/genetics , Esocidae/physiology , Sex Chromosomes/genetics , Sex Determination Processes/genetics , Animals , Animals, Genetically Modified , Chromosome Mapping , Female , Gene Duplication , Gene Knockdown Techniques , Male , Phylogeny , Synteny
15.
PLoS One ; 10(11): e0142334, 2015.
Article in English | MEDLINE | ID: mdl-26544955

ABSTRACT

BACKGROUND: Substantial progress in high-throughput metagenomic sequencing methodologies has enabled the characterisation of bacteria from various origins (for example gut and skin). However, the recently-discovered bacterial microbiota present within animal internal tissues has remained unexplored due to technical difficulties associated with these challenging samples. RESULTS: We have optimized a specific 16S rDNA-targeted metagenomics sequencing (16S metabarcoding) pipeline based on the Illumina MiSeq technology for the analysis of bacterial DNA in human and animal tissues. This was successfully achieved in various mouse tissues despite the high abundance of eukaryotic DNA and PCR inhibitors in these samples. We extensively tested this pipeline on mock communities, negative controls, positive controls and tissues and demonstrated the presence of novel tissue specific bacterial DNA profiles in a variety of organs (including brain, muscle, adipose tissue, liver and heart). CONCLUSION: The high throughput and excellent reproducibility of the method ensured exhaustive and precise coverage of the 16S rDNA bacterial variants present in mouse tissues. This optimized 16S metagenomic sequencing pipeline will allow the scientific community to catalogue the bacterial DNA profiles of different tissues and will provide a database to analyse host/bacterial interactions in relation to homeostasis and disease.


Subject(s)
Animal Structures/microbiology , Metagenomics , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Animals , Computational Biology , High-Throughput Nucleotide Sequencing , Humans , Mice , Mice, Inbred C57BL , Sequence Analysis, DNA
16.
Emerg Infect Dis ; 20(1): 105-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24377831

ABSTRACT

For decades, French guinea fowl have been affected by fulminating enteritis of unclear origin. By using metagenomics, we identified a novel avian gammacoronavirus associated with this disease that is distantly related to turkey coronaviruses. Fatal respiratory diseases in humans have recently been caused by coronaviruses of animal origin.


Subject(s)
Bird Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus/classification , Galliformes/virology , Animals , Coronavirus/genetics , France/epidemiology , Genome, Viral , Genotype , Molecular Sequence Data , Molecular Typing , Phylogeny , Spike Glycoprotein, Coronavirus/genetics
17.
PLoS Genet ; 9(9): e1003809, 2013.
Article in English | MEDLINE | ID: mdl-24086150

ABSTRACT

Prolific sheep have proven to be a valuable model to identify genes and mutations implicated in female fertility. In the Lacaune sheep breed, large variation in litter size is genetically determined by the segregation of a fecundity major gene influencing ovulation rate, named FecL and its prolific allele FecL(L) . Our previous work localized FecL on sheep chromosome 11 within a locus of 1.1 Mb encompassing 20 genes. With the aim to identify the FecL gene, we developed a high throughput sequencing strategy of long-range PCR fragments spanning the locus of FecL(L) carrier and non-carrier ewes. Resulting informative markers defined a new 194.6 kb minimal interval. The reduced FecL locus contained only two genes, insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) and beta-1,4-N-acetyl-galactosaminyl transferase 2 (B4GALNT2), and we identified two SNP in complete linkage disequilibrium with FecL(L) . B4GALNT2 appeared as the best positional and expressional candidate for FecL, since it showed an ectopic expression in the ovarian follicles of FecL(L) /FecL(L) ewes at mRNA and protein levels. In FecL(L) carrier ewes only, B4GALNT2 transferase activity was localized in granulosa cells and specifically glycosylated proteins were detected in granulosa cell extracts and follicular fluids. The identification of these glycoproteins by mass spectrometry revealed at least 10 proteins, including inhibin alpha and betaA subunits, as potential targets of B4GALNT2 activity. Specific ovarian protein glycosylation by B4GALNT2 is proposed as a new mechanism of ovulation rate regulation in sheep, and could contribute to open new fields of investigation to understand female infertility pathogenesis.


Subject(s)
Gene Expression Regulation , Infertility, Female/genetics , N-Acetylgalactosaminyltransferases/biosynthesis , Sheep, Domestic/genetics , Animals , Female , Fertility/genetics , Fertility/physiology , Glycosylation , Granulosa Cells/cytology , Granulosa Cells/metabolism , Humans , Infertility, Female/pathology , Luteinizing Hormone/metabolism , N-Acetylgalactosaminyltransferases/genetics , Ovarian Follicle/growth & development , Ovarian Follicle/metabolism , Ovulation/genetics , Ovulation/metabolism , RNA, Messenger/genetics , Sheep, Domestic/physiology
18.
Gene ; 500(1): 32-9, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22465513

ABSTRACT

Rainbow trout, Oncorhynchus mykiss, is an important aquaculture species worldwide and, in addition to being of commercial interest, it is also a research model organism of considerable scientific importance. Because of the lack of a whole genome sequence in that species, transcriptomic analyses of this species have often been hindered. Using next-generation sequencing (NGS) technologies, we sought to fill these informational gaps. Here, using Roche 454-Titanium technology, we provide new tissue-specific cDNA repertoires from several rainbow trout tissues. Non-normalized cDNA libraries were constructed from testis, ovary, brain and gill rainbow trout tissue samples, and these different libraries were sequenced in 10 separate half-runs of 454-Titanium. Overall, we produced a total of 3million quality sequences with an average size of 328bp, representing more than 1Gb of expressed sequence information. These sequences have been combined with all publicly available rainbow trout sequences, resulting in a total of 242,187 clusters of putative transcript groups and 22,373 singletons. To identify the predominantly expressed genes in different tissues of interest, we developed a Digital Differential Display (DDD) approach. This approach allowed us to characterize the genes that are predominantly expressed within each tissue of interest. Of these genes, some were already known to be tissue-specific, thereby validating our approach. Many others, however, were novel candidates, demonstrating the usefulness of our strategy and of such tissue-specific resources. This new sequence information, acquired using NGS 454-Titanium technology, deeply enriched our current knowledge of the expressed genes in rainbow trout through the identification of an increased number of tissue-specific sequences. This identification allowed a precise cDNA tissue repertoire to be characterized in several important rainbow trout tissues. The rainbow trout contig browser can be accessed at the following publicly available web site (http://www.sigenae.org/).


Subject(s)
Gene Expression Profiling , Oncorhynchus mykiss/genetics , Animals , Brain/metabolism , Female , Gills/metabolism , Gonads/metabolism , High-Throughput Nucleotide Sequencing , Male , Organ Specificity , Sequence Analysis, DNA
19.
Gut ; 61(4): 543-53, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22110050

ABSTRACT

OBJECTIVE: The gut microbiota, which is considered a causal factor in metabolic diseases as shown best in animals, is under the dual influence of the host genome and nutritional environment. This study investigated whether the gut microbiota per se, aside from changes in genetic background and diet, could sign different metabolic phenotypes in mice. METHODS: The unique animal model of metabolic adaptation was used, whereby C57Bl/6 male mice fed a high-fat carbohydrate-free diet (HFD) became either diabetic (HFD diabetic, HFD-D) or resisted diabetes (HFD diabetes-resistant, HFD-DR). Pyrosequencing of the gut microbiota was carried out to profile the gut microbial community of different metabolic phenotypes. Inflammation, gut permeability, features of white adipose tissue, liver and skeletal muscle were studied. Furthermore, to modify the gut microbiota directly, an additional group of mice was given a gluco-oligosaccharide (GOS)-supplemented HFD (HFD+GOS). RESULTS: Despite the mice having the same genetic background and nutritional status, a gut microbial profile specific to each metabolic phenotype was identified. The HFD-D gut microbial profile was associated with increased gut permeability linked to increased endotoxaemia and to a dramatic increase in cell number in the stroma vascular fraction from visceral white adipose tissue. Most of the physiological characteristics of the HFD-fed mice were modulated when gut microbiota was intentionally modified by GOS dietary fibres. CONCLUSIONS: The gut microbiota is a signature of the metabolic phenotypes independent of differences in host genetic background and diet.


Subject(s)
Adaptation, Physiological/physiology , Diet, High-Fat , Intestines/microbiology , Metagenome/physiology , Animals , Cecum/microbiology , Cytokines/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/physiopathology , Fatty Acids, Nonesterified/blood , Glucose Tolerance Test , Intestinal Absorption/physiology , Lipopolysaccharides/blood , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Permeability , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...