Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36015687

ABSTRACT

Covalent organic frameworks (COFs) have attracted significant interest because of their heteroatom-containing architectures, high porous networks, large surface areas, and capacity to include redox-active units, which can provide good electrochemical efficiency in energy applications. In this research, we synthesized two novel hydroxy-functionalized COFs-TAPT-2,3-NA(OH)2, TAPT-2,6-NA(OH)2 COFs-through Schiff-base [3 + 2] polycondensations of 1,3,5-tris-(4-aminophenyl)triazine (TAPT-3NH2) with 2,3-dihydroxynaphthalene-1,4-dicarbaldehyde (2,3-NADC) and 2,6-dihydroxynaphthalene-1,5-dicarbaldehyde (2,6-NADC), respectively. The resultant hydroxy-functionalized COFs featured high BET-specific surface areas up to 1089 m2 g-1, excellent crystallinity, and superior thermal stability up to 60.44% char yield. When used as supercapacitor electrodes, the hydroxy-functionalized COFs exhibited electrochemical redox activity due to the presence of redox-active 2,3-dihydroxynaphthalene and 2,6-dihydroxynaphthalene in their COF skeletons. The hydroxy-functionalized COFs showed specific capacitance of 271 F g-1 at a current density of 0.5 A g-1 with excellent stability after 2000 cycles of 86.5% capacitance retention. Well-known pore features and high surface areas of such COFs, together with their superior supercapacitor performance, make them suitable electrode materials for use in practical applications.

2.
Polymers (Basel) ; 14(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35406233

ABSTRACT

Stimuli-responsive polymeric nanoparticles (NPs) exhibit reversible changes in the dispersion or aggregation state in response to external stimuli. In this context, we designed and synthesized core-shell NPs with threonine-containing weak polyelectrolyte shells and fluorescent cross-linked cores, which are applicable for the detection of pH changes and amine compounds in aqueous solution. Stable and uniform NP(dTh) and NP(Fl), consisting of fluorescent symmetric diphenyl dithiophene (dTh) and diphenyl fluorene (Fl) cross-linked cores, were prepared by site-selective Suzuki coupling reactions in self-assembled block copolymer. NP(Fl) with the Fl unit in the core showed a high fluorescence intensity in different solvents, which is regarded as an aggregation-induced emission-type NP showing strong emission in aggregated states in the cross-linked core. Unimodal NPs were observed in water at different pH values, and the diameter of NP(Fl) changed from 122 (pH = 2) to 220 nm (pH = 11). Furthermore, pH-dependent changes of the fluorescence peak positions and intensities were detected, which may be due to the core aggregation derived from the deprotonation of the threonine-based shell fragment. Specific interactions between the threonine-based shell of NP(Fl) and amine compounds (triethylamine and p-phenylenediamine) resulted in fluorescence quenching, suggesting the feasibility of fluorescent amine detection.

3.
ACS Biomater Sci Eng ; 7(3): 1031-1045, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33591713

ABSTRACT

This work introduces a thermally stable zwitterionic structure able to withstand steam sterilization as a general antifouling medical device interface. The sulfobetaine methacrylate (SBMA) monomer and its polymer form are among the most widely used zwitterionic materials. They are easy to synthesize and have good antifouling properties. However, they partially lose their properties after steam sterilization, a common procedure used to sterilize biomedical interfaces. In this study, ultrahigh-performance liquid chromatography/mass spectrometry (UHPLC-MS) was used to analyze and discuss the molecular structure of SBMA before and after a steam sterilization procedure, and a strategy to address the thermal stability issue proposed, using sulfobetaine methacrylamide (SBAA) instead of SBMA. Interestingly, it was found that the chemical structure of SBAA material can withstand the medical sterilization process at 121 °C while maintaining good antifouling properties, tested with proteins (fibrinogen), bacteria (Escherichia coli), and whole blood. On the other hand, SBMA gels failed at maintaining their excellent antifouling properties after sterilization. This study suggests that the SBAA structure can be used to replace SBMA in the bioinert interface of sterilizable medical devices, such as rayon fiber membranes used for disease control.


Subject(s)
Betaine , Methacrylates , Betaine/analogs & derivatives , Polymers , Sterilization
4.
J Mater Chem B ; 7(45): 7184-7194, 2019 12 07.
Article in English | MEDLINE | ID: mdl-31657427

ABSTRACT

The present study investigates the properties and use as wound-dressing materials of hydrogels made of negatively charged 3-sulfopropyl methacrylate (SA) and positively charged [2-(methacryloyloxy)ethyl]trimethylammonium (TMA) to form poly(SA-co-TMA) gels with/without a charge bias. Their actual chemical compositions were ascertained by XPS which revealed a fair control of the final gel composition obtained from the initial molar ratio in the reaction solution. Zeta potential measurements confirmed the controlled charge bias on which swelling ratio was found to strongly depend, i.e., positively charged or negatively charged gels have a higher tendency to swell than poly(SA-co-TMA) made of 50 mol% of each unit. The anti-biofouling properties were also correlated to the charge bias, i.e., negatively charged and neutral gels resisted well to biofouling by fibrinogen and whole blood, and were much less cytotoxic than their positive counterparts. Applied as wound-dressing materials onto diabetic wounds, it was found that wound closure was almost reached after 21 days, regardless of the gel composition. However, histological analysis revealed that positively charged gels accelerated hemostasis, while neutral gels, much less cytotoxic, were more efficient in the following stages during which the granulation layer and dermis were fully remodelled leading to a dense fibroblast population and thick collagen with no sign of inflammation. All in all, this study sheds light on the effects of charge bias on different wound healing stages and proves the efficiency of pseudo-zwitterionic poly(SA-co-TMA) to heal diabetic wounds for the first time.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Hydrogels/pharmacology , Hypoglycemic Agents/pharmacology , Methacrylates/pharmacology , Polymers/pharmacology , Polymethacrylic Acids/pharmacology , Quaternary Ammonium Compounds/pharmacology , Wound Healing/drug effects , Adult , Alloxan/administration & dosage , Animals , Cell Line , Diabetes Mellitus, Experimental/chemically induced , Gels/chemical synthesis , Gels/chemistry , Gels/pharmacology , Healthy Volunteers , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Injections, Intravenous , Kinetics , Male , Methacrylates/chemistry , Particle Size , Polymers/chemistry , Polymethacrylic Acids/chemistry , Quaternary Ammonium Compounds/chemistry , Rats , Rats, Wistar , Surface Properties
5.
Macromol Rapid Commun ; 40(12): e1900115, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31021501

ABSTRACT

Donor-acceptor crosslinked poly[poly(ethylene glycol) methyl ether-methacrylate]-block-poly[1,1'-bis(2-ethylpentyl)-6-methyl-6'-(5-methyl-3-vinylthiophen-2-yl)-[3,3'-biindoline]-2,2'-dione] (poly(PEGMA)m -b-poly(VTIID)n ) nanoparticles with various vinylthiophene donor/isoindigo acceptor ratios are synthesized successfully. The prepared nanoparticles have uniform sizes and well-defined core-shell nanostructures. The intramolecular charge transfer is effectively enhanced due to the incorporation of acceptor groups after the crosslinking reaction. A transistor memory device is assembled using the synthesized polymer and has nonvolatile flash-type memory and amphiphilic trapping behavior. The optimized devices exhibit a significant memory window of approximately 38 V, a retention ability of over 104 s, and an endurance of at least 100 cycles. This study examines multiple applications of crosslinked core-shell nanoparticles, which demonstrates their promise as charge-storage dielectric materials for use in organic memory devices.


Subject(s)
Cross-Linking Reagents/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Transistors, Electronic , Cross-Linking Reagents/chemical synthesis , Molecular Structure , Particle Size , Polymers/chemical synthesis , Surface Properties
6.
ACS Appl Mater Interfaces ; 10(51): 44741-44750, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30488691

ABSTRACT

In this study, a series of alcohol-soluble cross-linked block copolymers (BCPs) consisting of poly( n-butyl acrylate) (poly( nBA)) and poly( N-vinyl-1,2,4-triazole) (poly(NVTri)) blocks with different individual functions and lengths are designed and developed. These presynthesized cross-linked BCPs (PBA n-Tri m) were, for the first time, revealed to exhibit many advantages in serving as the electron-extraction layer (EEL) for organic photovoltaics (OPVs). The cross-linked BCPs possessed intense ionic functionality, showing well capability to form effective interfacial dipoles at the indium tin oxide interface to facilitate the charge extraction at the corresponding interface. Furthermore, it also consisted a core-shell structure, wherein the polar poly(NVTri) core was well protected by the poly( nBA) shell to endow improved robustness against solvent erosion and thermal/photo inputs. Consequently, the PBA70-Tri30 device yielded a decent power conversion efficiency of 8.03% with a Voc of 0.83 V, much exceeding the performance of the control device without using any EEL. Moreover, this device showed superior thermal stability/photostability. More than 80% of its initial performance was retained after being heated at 60 °C for 1000 h or exposed under continuous illumination (1 sun) for 1000 h, greatly surpassing the lifetime of the control device and the reference device using a common poly[(9,9-bis(3'-( N, N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) EEL. The results revealed the merit of using cross-linked BCPs in improving the long-term stability of OPVs.

7.
Polymers (Basel) ; 10(7)2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30960646

ABSTRACT

Synthesis of novel block and random copolymers, containing a carbazole unit and (di)phenylanthracene moiety in the side chains, has been described in this paper. Block and random copolymers composed of 4-bromophenyl vinyl sulfide (BPVS) and N-vinylcarbazole (NVC) were initially prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Then, anthracene-based groups were introduced on the bromophenyl unit in the carbazole-containing copolymers by Pd-catalyzed coupling to yield functional copolymers with additional (di)phenylanthracene units. The resulting copolymers, having two distinct electronic functionalities, exhibited characteristic fluorescence resonance energy transfer, as confirmed by UV-vis and fluorescence spectra.

8.
Polymers (Basel) ; 9(11)2017 Nov 15.
Article in English | MEDLINE | ID: mdl-30965921

ABSTRACT

Ionic liquid-based block copolymers composed of ionic (solubility tunable)⁻nonionic (water-soluble and thermoresponsive) segments were synthesized to explore the relationship between ionic conductivity and assembled structures. Three block copolymers, comprising poly(N-vinylimidazolium bromide) (poly(NVI-Br)) as a hydrophilic poly(ionic liquid) segment and thermoresponsive poly(N-isopropylacrylamide) (poly(NIPAM)), having different compositions, were initially prepared by RAFT polymerization. The anion-exchange reaction of the poly(NVI-Br) in the block copolymers with lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) proceeded selectively to afford amphiphilic block copolymers composed of hydrophobic poly(NVI-NTf2) and hydrophilic poly(NIPAM). Resulting poly(NVI-NTf2)-b-poly(NIPAM) exhibited ionic conductivities greater than 10-3 S/cm at 90 °C and 10-4 S/cm at 25 °C, which can be tuned by the comonomer composition and addition of a molten salt. Temperature-dependent ionic conductivity and assembled structures of these block copolymers were investigated, in terms of the comonomer composition, nature of counter anion and sample preparation procedure.

9.
Chem Commun (Camb) ; 52(45): 7269-72, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27180874

ABSTRACT

Solution processable cross-linked core-shell poly[poly(ethylene glycol)methylether methacrylate]-block-poly(2,5-dibromo-3-vinylthiophene) (poly(PEGMA)m-b-poly(DB3VT)n) nanoparticles are firstly explored as charge storage materials for transistor-type memory devices owing to their efficient and controllable ability in electric charge transfer and trapping.

SELECTION OF CITATIONS
SEARCH DETAIL
...