Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Microbiol Biotechnol ; 2(4): 521-30, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11075928

ABSTRACT

The initiation of fermentation in the yeast Saccharomyces cerevisiae is associated with a rapid drop in stress resistance. This is disadvantageous for several biotechnological applications, e.g. the preparation of freeze doughs. We have isolated mutants in a laboratory strain which are deficient in fermentation-induced loss of stress resistance ('fil' mutants) using a heat shock selection protocol. We show that the fil1 mutant contains a mutation in the CYR1 gene which encodes adenylate cyclase. It causes a change at position 1682 of glutamate into lysine and results in a tenfold drop in adenylate cyclase activity. The fil1 mutant displays a reduction in the glucose-induced cAMP increase, trehalase activation and loss of heat resistance. Interestingly, the fil1 mutant shows the same growth and fermentation rate as the wild type strain, as opposed to other mutants with reduced activity of the cAMP pathway. Introduction of the fil1 mutation in the vigorous Y55 strain and cultivation of the mutant under pilot scale conditions resulted in a yeast that displayed a higher freeze and drought resistance during active fermentation compared to the wild type Y55 strain. These results show that high stress resistance and high fermentation activity are compatible biological properties. Isolation of fil-type mutations appears a promising avenue for development of industrial yeast strains with improved stress resistance during active fermentation.


Subject(s)
Adenylyl Cyclases/genetics , Saccharomyces cerevisiae/genetics , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/metabolism , Amino Acid Sequence , Amino Acid Substitution , Cyclic AMP/metabolism , Ethanol/metabolism , Ethyl Methanesulfonate , Fermentation , Genes, Recessive , Glucose/metabolism , Glutamic Acid , Kinetics , Lysine , Mutagenesis , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Sequence Alignment , Temperature
2.
Int J Food Microbiol ; 55(1-3): 187-92, 2000 Apr 10.
Article in English | MEDLINE | ID: mdl-10791742

ABSTRACT

In frozen dough applications a prefermentation period during the preparation of the dough is unavoidable and might also be important to obtain bread with a good texture. A major disadvantage of the prefermentation period is that it is associated with a rapid loss of the freeze resistance of the yeast cells. A major goal for the development of new baker's yeast strains for use in frozen dough applications is the availability of strains that maintain a better freeze resistance during the prefermentation period. We have isolated mutants that retain a better stress resistance during the initiation of fermentation. Some of these showed the same growth rate and fermentation capacity as the wild type cells. These mutants are called 'fil', for deficient infermentation induced loss of stress resistance. First we used laboratory strains and heat stress treatment, given shortly after the initiation of fermentation, as the selection protocol. The first two mutants isolated in this way were affected in the glucose-activation mechanism of the Ras-cAMP pathway. The fil1 mutant had a partially inactivating point mutation in CYR1, the gene encoding adenylate cyclase, while fil2 contained a nonsense mutation in GPR1. GPR1 encodes a member of the G-protein coupled receptor family which acts as a putative glucose receptor for activation of the Ras-cAMP pathway. In a next step we isolated fil mutants directly in industrial strains using repetitive freeze treatment of doughs as selection protocol. Surviving yeast strains were tested individually for maintenance of fermentation capacity after freeze treatment in laboratory conditions and also for the best performing strains in frozen doughs prepared with yeast cultivated on a pilot scale. The most promising mutant, AT25, displayed under all conditions a better maintenance of gassing power during freeze-storage. It was not affected in other commercially important properties and will now be characterised extensively at the biochemical and molecular level.


Subject(s)
Fermentation , Freezing , Saccharomyces cerevisiae/metabolism , Mutation , Trehalose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...