Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
NanoImpact ; 23: 100346, 2021 07.
Article in English | MEDLINE | ID: mdl-35559847

ABSTRACT

Recent evidence has supported welding fume (WF)-derived ultrafine particles (UFP) could be the driving force of their adverse health effects. However, UFP have not yet been extensively studied and are currently not included in present air quality standards/guidelines. Here, attention was focused on the underlying genetic and epigenetic mechanisms by which the quasi-UFP (Q-UFP, i.e., ≤ 0.25 µm) of the WF emitted by gas metal arc welding-stainless steel (GMAW-SS) exert their toxicity in human bronchial epithelial BEAS-2B cells. The Q-UFP under study showed a monomodal size distribution in number centered on 104.4 ± 52.3 nm and a zeta potential of -13.8 ± 0.3 mV. They were enriched in Fe > Cr > Mn > Si, and displayed a relatively high intrinsic oxidative potential. Dose-dependent activation of nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B signaling pathway, glutathione alteration, and DNA, protein and lipid oxidative damage were reported in BEAS-2B cells acutely (1.5 and 9 µg/cm2, 24 h) or repeatedly (0.25 and 1.5 µg/cm2, 3 × 24 h) exposed to Q-UFP (p < 0.05). Alterations of the Histone H3 acetylation were reported for any exposure (p < 0.05). Differentially regulated miRNA and mRNA indicated the activation of some critical cell signaling pathways related to oxidative stress, inflammation, and cell cycle deregulation towards apoptosis. Taken together, these results highlighted the urgent need to better evaluate the respective toxicity of the different metals and to include the Q-UFP fraction of WF in current air quality standards/guidelines relevant to the occupational settings.


Subject(s)
Welding , Epigenesis, Genetic , Gases , Humans , Metals , Particulate Matter/toxicity , Stainless Steel/toxicity , Welding/methods
2.
J Appl Toxicol ; 41(2): 203-215, 2021 02.
Article in English | MEDLINE | ID: mdl-32767597

ABSTRACT

Air pollution is a public health issue and the toxicity of ambient particulate matter (PM) is well-recognized. Although it does not mostly contribute to the total mass of PM, increasing evidence indicates that the ultrafine fraction has generally a greater toxicity than the others do. A better knowledge of the underlying mechanisms involved in the pathological disorders related to nanoparticles (NPs) remains essential. Hence, the goal of this study was to determine better whether the exposure to a relatively low dose of well-characterized iron-rich NPs (Fe-NPs) might alter some critical toxicological endpoints in a relevant primary culture model of human bronchial epithelial cells (HBECs). We sought to use Fe-NPs representative of those frequently found in the industrial smokes of metallurgical industries. After having noticed the effective internalization of Fe-NPs, oxidative, inflammatory, DNA repair, and apoptotic endpoints were investigated within HBECs, mainly through transcriptional screening. Taken together, these results revealed that, despite it only produced relatively low levels of reactive oxygen species without any significant oxidative damage, low-dose Fe-NPs quickly significantly deregulated the transcription of some target genes closely involved in the proinflammatory response. Although this inflammatory process seemed to stay under control over time in case of this acute scenario of exposure, the future study of its evolution after a scenario of repeated exposure could be very interesting to evaluate the toxicity of Fe-NPs better.


Subject(s)
Air Pollutants/toxicity , Bronchi/drug effects , Epithelial Cells/drug effects , Iron/toxicity , Nanoparticles/toxicity , Oxidative Stress/drug effects , Particulate Matter/toxicity , Humans
3.
Environ Int ; 142: 105830, 2020 09.
Article in English | MEDLINE | ID: mdl-32585499

ABSTRACT

Nowadays ambient particulate matter (PM) levels still regularly exceed the guideline values established by World Health Organization in most urban areas. Numerous experimental studies have already demonstrated the airway toxicity of the fine fraction of PM (FP), mainly triggered by oxidative stress-induced airway inflammation. However, only few studies have actually paid close attention to the ultrafine fraction of PM (UFP), which is likely to be more easily internalized in cells and more biologically reactive. Mitochondria are major endogenous sources of reactive oxygen species (ROS) through oxidative metabolism, and coordinate many critical cellular signaling processes. Mitochondria have been often studied in the context of PM toxicity and generally associated with apoptosis activation. However, little is known about the underlying adaptation mechanisms that could occur following exposure at sub-apoptotic doses of ambient PM. Here, normal human bronchial epithelial BEAS-2B cells were acutely or repeatedly exposed to relatively low doses (5 µg.cm-2) of FP (PM2.5-0.18) or quasi-UFP (Q-UFP; PM0.18) to better access the critical changes in mitochondrial morphology, functions, and dynamics. No significant cytotoxicity nor increase of apoptotic events were reported for any exposure. Mitochondrial membrane potential (ΔΨm) and intracellular ATP content were also not significantly impaired. After cell exposure to sub-apoptotic doses of FP and notably Q-UFP, oxidative phosphorylation was increased as well as mitochondrial mass, resulting in increased production of mitochondrial superoxide anion. Given this oxidative boost, the NRF2-ARE signaling pathway was significantly activated. However, mitochondrial dynamic alterations in favor of accentuated fission process were observed, in particular after Q-UFP vs FP, and repeated vs acute exposure. Taken together, these results supported mitochondrial quality control and metabolism dysfunction as an early lung underlying mechanism of toxicity, thereby leading to accumulation of defective mitochondria and enhanced endogenous ROS generation. Therefore, these features might play a key role in maintaining PM-induced oxidative stress and inflammation within lung cells, which could dramatically contribute to the exacerbation of inflammatory chronic lung diseases. The prospective findings of this work could also offer new insights into the physiopathology of lung toxicity, arguably initiate and/or exacerbate by acutely and rather repeated exposure to ambient FP and mostly Q-UFP.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Epithelial Cells , Humans , Particle Size , Particulate Matter/analysis , Prospective Studies
4.
Int J Toxicol ; 39(2): 103-114, 2020.
Article in English | MEDLINE | ID: mdl-31934807

ABSTRACT

Cadmium is an environmental pollutant well known for its nephrotoxic effects. Nevertheless, mechanisms underlying nephrotoxicity continue to be elucidated. MicroRNAs (miRNAs) have emerged in recent years as modulators of xenobiotic-induced toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in renal proximal tubular toxicity induced by cadmium exposure. We showed that cadmium exposure, in 2 distinct renal proximal tubular cell models (renal proximal tubular epithelial cell [RPTEC]/human telomerase reverse transcriptase [hTERT] and human kidney-2), resulted in cytotoxicity associated with morphological changes, overexpression of renal injury markers, and induction of apoptosis and inflammation processes. Cadmium exposure also resulted in miRNA modulation, including the significant upregulation of 38 miRNAs in RPTEC/hTERT cells. Most of these miRNAs are known to target genes whose coding proteins are involved in oxidative stress, inflammation, and apoptosis, leading to tissue remodeling. In conclusion, this study provides a list of dysregulated miRNAs which may play a role in the pathophysiology of cadmium-induced kidney damages and highlights promising cadmium molecular biomarkers that warrants to be further evaluated.


Subject(s)
Epithelial Cells/drug effects , Kidney/cytology , MicroRNAs/metabolism , Cadmium/toxicity , Cell Line , Cell Survival/drug effects , Epithelial Cells/metabolism , Humans
5.
Sci Total Environ ; 711: 134666, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31812380

ABSTRACT

Air pollution and particulate matter (PM) are classified as carcinogenic to humans. Pollutants evidence for public health concern include coarse (PM10) and fine (PM2.5) particles. However, ultrafine particles (PM0.1) are assumed to be more toxic than larger particles, but data are still needed to better understand their mechanism of action. In this context, the aim of our work was to investigate the in vitro and in vivo genotoxic potential of fine (PM2.5-018) and quasi ultra-fine (PM0.18) particles from an urban-industrial area (Dunkirk, France) by using comet, micronucleus and/or gene mutation assays. In vitro assessment was performed with 2 lung immortalized cell lines (BEAS-2B and NCI-H292) and primary normal human bronchial epithelial cells (NHBE) grown at the air-liquid interface or in submerged conditions (5 µg PM/cm2). For in vivo assessment, tests were performed after acute (24 h, 100 µg PM/animal), subacute (1 month, 10 µg PM/animal) and subchronic (3 months, 10 µg PM/animal) intranasal exposure of BALB/c mice. In vitro, our results show that PM2.5-018 and PM0.18 induced primary DNA damage but no chromosomal aberrations in immortalized cells. Negative results were noted in primary cells for both endpoints. In vivo assays revealed that PM2.5-018 and PM0.18 induced no significant increases in DNA primary damage, chromosomal aberrations or gene mutations, whatever the duration of exposure. This investigation provides initial answers regarding the in vitro and in vivo genotoxic mode of action of PM2.5-018 and PM0.18 at moderate doses and highlights the need to develop standardized specific methodologies for assessing the genotoxicity of PM. Moreover, other mechanisms possibly implicated in pulmonary carcinogenesis, e.g. epigenetics, should be investigated.


Subject(s)
Air Pollution , Air Pollutants , Animals , DNA Damage , France , Lung , Mice , Mice, Inbred BALB C , Particle Size , Particulate Matter
6.
Environ Res ; 176: 108538, 2019 09.
Article in English | MEDLINE | ID: mdl-31344532

ABSTRACT

The knowledge of the underlying mechanisms by which particulate matter (PM) exerts its health effects is still incomplete since it may trigger various symptoms as some persons may be more susceptible than others. Detailed studies realized in more relevant in vitro models are highly needed. Healthy normal human bronchial epithelial (NHBE), asthma-diseased human bronchial epithelial (DHBE), and COPD-DHBE cells, differentiated at the air-liquid interface, were acutely or repeatedly exposed to fine (i.e., PM2.5-0.18, also called FP) and quasi-ultrafine (i.e., PM0.18, also called UFP) particles. Immunofluorescence labelling of pan-cytokeratin, MUC5AC, and ZO-1 confirmed their specific cell-types. Baselines of the inflammatory mediators secreted by all the cells were quite similar. Slight changes of TNFα, IL-1ß, IL-6, IL-8, GM-CSF, MCP-1, and/or TGFα, and of H3K9 histone acetylation supported a higher inflammatory response of asthma- and especially COPD-DHBE cells, after exposure to FP and especially UFP. At baseline, 35 differentially expressed genes (DEG) in asthma-DHBE, and 23 DEG in COPD-DHBE, compared to NHBE cells, were reported. They were involved in biological processes implicated in the development of asthma and COPD diseases, such as cellular process (e.g., PLA2G4C, NLRP1, S100A5, MUC1), biological regulation (e.g., CCNE1), developmental process (e.g., WNT10B), and cell component organization and synthesis (e.g., KRT34, COL6A1, COL6A2). In all the FP or UFP-exposed cell models, DEG were also functionally annotated to the chemical metabolic process (e.g., CYP1A1, CYP1B1, CYP1A2) and inflammatory response (e.g., EREG). Another DEG, FGF-1, was only down-regulated in asthma and specially COPD-DHBE cells repeatedly exposed. While RAB37 could help to counteract the down-regulation of FGF-1 in asthma-DHBE cells, the deregulation of FGR, WNT7B, VIPR1, and PPARGC1A could dramatically contribute to make it worse in COPD-DHBE cells. Taken together, these data contributed to support the highest effects of UFP versus FP and highest sensitivity of asthma- and notably COPD-DHBE versus NHBE cells.


Subject(s)
Air Pollutants/toxicity , Particulate Matter/toxicity , Bronchi , Epithelial Cells , Humans , Particle Size , Phenotype , S100 Proteins
7.
Environ Pollut ; 243(Pt B): 1434-1449, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30278417

ABSTRACT

In order to clarify whether the mitochondrial dysfunction is closely related to the cell homeostasis maintenance after particulate matter (PM2.5) exposure, oxidative, inflammatory, apoptotic and mitochondrial endpoints were carefully studied in human bronchial epithelial BEAS-2B, normal human bronchial epithelial (NHBE) and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells acutely or repeatedly exposed to air pollution-derived PM2.5. Some modifications of the mitochondrial morphology were observed within all these cell models repeatedly exposed to the highest dose of PM2.5. Dose- and exposure-dependent oxidative damages were reported in BEAS-2B, NHBE and particularly COPD-DHBE cells acutely or repeatedly exposed to PM2.5. Nuclear factor erythroid 2-p45 related factor 2 (NRF2) gene expression and binding activity, together with the mRNA levels of some NRF2 target genes, were directly related to the number of exposures for the lowest PM2.5 dose (i.e., 2 µg/cm2), but, surprisingly, inversely related to the number of exposures for the highest dose (i.e., 10 µg/cm2). There were dose- and exposure-dependent increases of both nuclear factor kappa-B (NF-κB) binding activity and NF-κB target cytokine secretion in BEAS-2B, NHBE and particularly COPD-DHBE cells exposed to PM2.5. Mitochondrial ROS production, membrane potential depolarization, oxidative phosphorylation, and ATP production were significantly altered in all the cell models repeatedly exposed to the highest dose of PM2.5. Collectively, our results indicate a cytosolic ROS overproduction, inducing oxidative damage and activating oxygen sensitive NRF2 and NF-kB signaling pathways for all the cell models acutely or repeatedly exposed to PM2.5. However, one of the important highlight of our findings is that the prolonged and repeated exposure in BEAS-2B, NHBE and in particular sensible COPD-DHBE cells further caused an oxidative boost able to partially inactivate the NRF2 signaling pathway and to critically impair mitochondrial redox homeostasis, thereby producing a persistent mitochondrial dysfunction and a lowering cell energy supply.


Subject(s)
Air Pollutants/analysis , Mitochondria/drug effects , Particulate Matter/analysis , Particulate Matter/toxicity , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Bronchi/cytology , Epithelial Cells/drug effects , Humans , Hypersensitivity , Lung/drug effects , Mitochondria/metabolism , NF-E2-Related Factor 2 , Particulate Matter/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism
8.
Environ Pollut ; 230: 163-177, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28651088

ABSTRACT

Even though clinical, epidemiological and toxicological studies have progressively provided a better knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects, further in vitro studies on relevant cell systems are still needed. Hence, aiming of getting closer to the human in vivo conditions, primary human bronchial epithelial cells derived from normal subjects (NHBE) or sensitive chronic obstructive pulmonary disease (COPD)-diseased patients (DHBE) were differentiated at the air-liquid interface. Thereafter, they were repeatedly exposed to air pollution-derived PM2.5 to study the occurrence of some relevant genetic and/or epigenetic endpoints. Concentration-, exposure- and season-dependent increases of OH-B[a]P metabolites in NHBE, and to a lesser extent, COPD-DHBE cells were reported; however, there were more tetra-OH-B[a]P and 8-OHdG DNA adducts in COPD-DHBE cells. No increase in primary DNA strand break nor chromosomal aberration was observed in repeatedly exposed cells. Telomere length and telomerase activity were modified in a concentration- and exposure-dependent manner in NHBE and particularly COPD-DHBE cells. There were a global DNA hypomethylation, a P16 gene promoter hypermethylation, and a decreasing DNA methyltransferase activity in NHBE and notably COPD-DHBE cells repeatedly exposed. Changes in site-specific methylation, acetylation, and phosphorylation of histone H3 (i.e., H3K4me3, H3K9ac, H3K27ac, and H3S10ph) and related enzyme activities occurred in a concentration- and exposure-dependent manner in all the repeatedly exposed cells. Collectively, these results highlighted the key role played by genetic and even epigenetic events in NHBE and particularly sensitive COPD-DHBE cells repeatedly exposed to air pollution-derived PM2.5 and their different responsiveness. While these specific epigenetic changes have been already described in COPD and even lung cancer phenotypes, our findings supported that, together with genetic events, these epigenetic events could dramatically contribute to the shift from healthy to diseased phenotypes following repeated exposure to relatively low doses of air pollution-derived PM2.5.


Subject(s)
Air Pollutants/toxicity , Particulate Matter/toxicity , Pulmonary Disease, Chronic Obstructive/genetics , Air Pollutants/analysis , Air Pollution/analysis , Cell Line , Epigenesis, Genetic , Epithelial Cells/drug effects , Humans , Hypersensitivity , Particulate Matter/analysis , Toxicity Tests
9.
Environ Pollut ; 218: 1074-1088, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27593349

ABSTRACT

While the knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects is still incomplete, detailed in vitro studies are highly needed. With the aim of getting closer to the human in vivo conditions and better integrating a number of factors related to pre-existing chronic pulmonary inflammatory, we sought to develop primary cultures of normal human bronchial epithelial (NHBE) cells and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells, grown at the air-liquid interface. Pan-cytokeratin and MUC5AC immunostaining confirmed the specific cell-types of both these healthy and diseased cell models and showed they are closed to human bronchial epithelia. Thereafter, healthy and diseased cells were repeatedly exposed to air pollution-derived PM4 at the non-cytotoxic concentration of 5 µg/cm2. The differences between the oxidative and inflammatory states in non-exposed NHBE and COPD-DHBE cells indicated that diseased cells conserved their specific physiopathological characteristics. Increases in both oxidative damage and cytokine secretion were reported in repeatedly exposed NHBE cells and particularly in COPD-DHBE cells. Diseased cells repeatedly exposed had lower capacities to metabolize the organic chemicals-coated onto the air-pollution-derived PM4, such as benzo[a]pyrene (B[a]P), but showed higher sensibility to the formation of OH-B[a]P DNA adducts, because their diseased state possibly affected their defenses. Differential profiles of epigenetic hallmarks (i.e., global DNA hypomethylation, P16 promoter hypermethylation, telomere length shortening, telomerase activation, and histone H3 modifications) occurred in repeatedly exposed NHBE and particularly in COPD-DHBE cells. Taken together, these results closely supported the highest responsiveness of COPD-DHBE cells to a repeated exposure to air pollution-derived PM4. The use of these innovative in vitro exposure systems such as NHBE and COPD-DHBE cells could therefore be consider as a very useful and powerful promising tool in the field of the respiratory toxicology, taking into account sensitive individuals.


Subject(s)
Air Pollutants/toxicity , Epithelial Cells/drug effects , Particulate Matter/toxicity , Air Pollution , Cell Line , Epithelial Cells/metabolism , Humans , Lung/cytology , Lung/drug effects , Lung/metabolism , Oxidative Stress/drug effects , Pulmonary Disease, Chronic Obstructive/metabolism
10.
Regul Toxicol Pharmacol ; 79: 144-148, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27058761

ABSTRACT

Electronic cigarette use has rapidly increased in recent years. In assessing their safety, and in view of coming regulations, trace elements (TE) are among the potentially toxic compounds required to be evaluated in electronic cigarette refill fluids ("e-liquids"). An analytical method using inductively coupled plasma with mass spectrometric detection (ICP-MS) was developed and rigorously validated in order to determine concentrations of 15 TE in 54 e-liquids from a French brand. Despite a significant matrix effect from the main e-liquid constituents, and difficulties related to the current lack of reference materials, our method demonstrated satisfactory linearity, precision and robustness, and permitted the quantification of low concentrations of these 15 elements: lower limits of quantification (LLQ) obtained were ≤4 ppb for all elements except for Ni, Cu and Zn (16 ppb, 20 ppb and 200 ppb, respectively). All TE concentrations in all tested samples were <510 ppb, mostly near or below the LLQs. This method is transposable and is timely for laboratories seeking to meet a prospective demand in light of current or future regulations.


Subject(s)
Drug Contamination , Electronic Nicotine Delivery Systems , Mass Spectrometry/methods , Nicotinic Agonists/analysis , Smoking Cessation/methods , Solvents/analysis , Trace Elements/analysis , Calibration , Limit of Detection , Linear Models , Mass Spectrometry/standards , Reference Standards , Reproducibility of Results
11.
Biochem Pharmacol ; 76(3): 404-15, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18602085

ABSTRACT

Human thiopurine S-methyltransferase (TPMT, EC 2.1.1.67) is a key enzyme in the detoxification of thiopurine drugs widely used in the treatment of various diseases, such as inflammatory bowel diseases, acute lymphoblastic leukaemia and rheumatic diseases. The TPMT gene is genetically polymorphic and the inverse relationship between TPMT activity and the risk of developing severe hematopoietic toxicity is well known. In this study, the entire coding sequence of TPMT, together with its 5'-flanking promoter region, was analysed in patients with an intermediate phenotype for thiopurine drug methylation. Four polymorphisms were identified, two previously described, c.356A>C (p.Lys(119)Thr, TPMT*9) and c.205C>G (p.Leu(69)Val, TPMT*21), and two novel missense mutations, c.537G>T (p.Gln(179)His, TPMT*24) and c.634T>C (p.Cys(212)Arg, TPMT*25). Structural investigations, using molecular modeling, were undertaken in an attempt to explain the potential impact of the amino acid substitutions on the structure and activity of the variant proteins. Additionally, in order to determine kinetic parameters (K(m) and V(max)) of 6-thioguanine (6-TG) methylation, the four variants were expressed in a recombinant yeast expression system. Assays were performed by HPLC and the results were compared with those of wild-type TPMT. The p.Leu(69)Val and the p.Cys(212)Arg substitutions encode recombinant enzymes with a significantly decreased intrinsic clearance compared to that of the wild-type protein, and, consequently, characterise non-functional alleles of TPMT. The p.Lys(119)Thr and the p.Gln(179)His substitutions do not affect significantly the catalytic activity of the corresponding variant proteins, which prevents to unambiguously describe these latter alleles as defective TPMT variants.


Subject(s)
Alleles , Methyltransferases/genetics , Mutation, Missense , Polymorphism, Genetic , 5' Flanking Region/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Base Sequence , Crystallography, X-Ray , DNA/genetics , Genotype , Humans , Inactivation, Metabolic/genetics , Leukocytes/enzymology , Leukocytes/metabolism , Methyltransferases/chemistry , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Purines/pharmacokinetics , Reverse Transcriptase Polymerase Chain Reaction , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Sequence Alignment , White People/genetics
12.
Xenobiotica ; 37(12): 1433-8, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17943660

ABSTRACT

Since human cytochrome P450 2F1 (CYP2F1) is predominantly expressed in lung tissue and is involved in the metabolism of various pneumotoxicants with potential carcinogenic effects, variations in the nucleotidic sequence of its gene may contribute to interindividual and interethnic differences in the susceptibility to lung tumorigenesis. The aim of the current study was to compare the frequency of a previously reported frameshift mutation, namely c.14_15insC, responsible for the synthesis of a severely truncated protein, between several populations of different ethnic origins. The frequencies of this polymorphism were 26.1, 51.6, 42.7 and 22.9% in French, Gabonese, Senegalese, and Tunisian population samples, respectively, thereby representing a substantial inter ethnic variation in the CYP2F1 gene. These findings provide data for further studies that investigate the potential association of CYP2F1 haplotypes with an incidence of lung cancer genesis in respect of ethnicity.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Ethnicity/genetics , Lung Neoplasms/genetics , Polymorphism, Restriction Fragment Length , Adolescent , Adult , Child , Cytochrome P-450 Enzyme System/biosynthesis , Cytochrome P450 Family 2 , Female , Genetic Predisposition to Disease/ethnology , Haplotypes , Humans , Lung/enzymology , Lung Neoplasms/enzymology , Lung Neoplasms/ethnology , Male , Middle Aged
13.
Xenobiotica ; 36(12): 1191-200, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17162466

ABSTRACT

The genetic polymorphism affecting the CYP3A5 enzyme is responsible for interindividual and interethnic variability in the metabolism of CYP3A5 substrates. The full extent of the CYP3A5 genetic polymorphism was analysed in French Caucasian, Gabonese and Tunisian populations using a polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) strategy. In the three populations, eight, 17 and ten single nucleotide polymorphisms (SNPs), respectively, were identified, among which nine correspond to rare new mutations. Also identified were 16 alleles including eight new allelic variants. Significant differences were observed in the distribution of these alleles. Particularly, the frequency of the CYP3A5*3C null allele in French Caucasians (81.3%) and in Tunisians (80.0%) is higher than in the Gabonese population (12.5%) (p < 0.001). Considering the CYP3A5 genotypes of the tested individuals, only 10.4% of French Caucasians and 30.0% of Tunisians were identified as CYP3A5 expressors. In contrast, 90.0% of Gabonese subjects appear to express the CYP3A5 protein.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Ethnicity/genetics , Polymorphism, Genetic , Alleles , Cytochrome P-450 CYP3A , France , Gabon , Gene Frequency , Humans , Phenotype , Polymorphism, Single Nucleotide , Polymorphism, Single-Stranded Conformational , Tunisia , White People/genetics
14.
Xenobiotica ; 35(7): 661-9, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16316926

ABSTRACT

Since human CYP2A13 is expressed in the respiratory tract and is involved in the activation of tobacco-specific nitrosamines, some of the previously reported sequence variations may contribute to inter-individual and inter-ethnic differences in the susceptibility of tobacco-related tumorigenesis. The aim was to compare the frequencies of the 578C > T (Arg101Stop), 3375C > T (Arg257Cys) and 7520C > G (3'-untranslated region) mutations in several populations. The frequencies of the 578C > T polymorphism were 3.8, 0 and 1.0% in French Caucasians, Gabonese and Tunisians, respectively. In the same populations, the frequencies of the 3375C > T mutation were 0, 15.3 and 4.2%, respectively, whereas the frequencies of the 7520C > G mutation were 1.0, 20.8 and 7.3%, respectively. Marked inter-ethnic variations in CYP2A13 were identified and confirmed. These findings provide data for further studies that associate CYP2A13 haplotypes with an incidence of smoking-related tumours in respect of ethnicity.


Subject(s)
3' Untranslated Regions/genetics , Aryl Hydrocarbon Hydroxylases/genetics , Gene Frequency , Point Mutation , Polymorphism, Genetic , Black People , Codon, Terminator/genetics , Genetic Predisposition to Disease , Genotype , Haplotypes , Humans , Neoplasms/chemically induced , Neoplasms/genetics , Smoking/adverse effects , Smoking/genetics , White People
15.
Pharmacogenetics ; 11(8): 739-41, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11692084

ABSTRACT

From 10 to 30% of CYP2D6 ultra-rapid metabolizers of Caucasian origin harbor alleles with duplicated or amplified functional CYP2D6 genes. Recently, the CYP2D6*35 allele has been reported to be more frequent in ultra-rapid metabolizing subjects than in extensive metabolizers, suggesting a possible role of this variant in CYP2D6 duplication-negative ultra-rapid metabolizing subjects. In this study, we examined the functional consequences of the Val11Met, Arg296Cys and Ser486Thr amino acid substitutions associated with the CYP2D6*35 on the expression and catalytic activity of the variant enzyme, heterologously expressed in yeast. Our results indicate that the functional activity and level of expression of recombinant CYP2D6.35 are comparable with those of the wild-type enzyme, thus precluding the hypothesis that the high level of enzyme activity in CYP2D6 duplication-negative ultra-rapid metabolizing subjects is a consequence of the expression of a more catalytically effective CYP2D6.35 enzyme.


Subject(s)
Alleles , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Amino Acid Substitution/genetics , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Metabolic Clearance Rate/genetics , White People/genetics
16.
Mutat Res ; 432(3-4): 61-7, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11465543

ABSTRACT

Thromboxane synthase (CYP5A1) catalyzes the conversion of prostaglandin H2 to thromboxane A2, a potent mediator of platelet aggregation, vasoconstriction and bronchoconstriction. It has been implicated in the patho-physiological process of a variety of diseases, such as atherosclerosis, myocardial infarction, stroke and asthma. On the basis of the hypothesis that variations of the CYP5A1 gene may play an important role in human diseases, we performed a screening for variations in the human CYP5A1 gene sequence. We examined genomic DNA from 200 individuals, for mutations in the promoter region, the protein encoding sequences and the 3'-untranslated region of the CYP5A1. Eleven polymorphisms have been identified in the CYP5A1 gene including eight missense mutations R61H, D161E, N246S, L357V, Q417E, E450K, T451N and R466Q. This is the first report of genetic variants in the human CYP5A1 altering the protein sequence. The effect of these variants on the metabolic activity of CYP5A1 remains to be further evaluated.


Subject(s)
Genetic Variation , Thromboxane-A Synthase/genetics , Alleles , Base Sequence , DNA/genetics , DNA Primers/genetics , Gene Frequency , Humans , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , Promoter Regions, Genetic
17.
Hum Genet ; 108(2): 148-55, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11281454

ABSTRACT

Inheritable interindividual differences in prostacyclin production may be implicated in the pathogenesis of several human vascular diseases. Using a polymerase chain reaction/single-strand conformation polymorphism strategy, we screened for mutations in the gene encoding cytochrome P450 prostacyclin synthase (CYP8A1). DNA samples from healthy French volunteers (n = 130) of Caucasian origin were examined. Five mutations, comprising two previously reported silent mutations and three novel rare missense mutations (P38L, S118R, and R379S), were identified in the coding sequence of the gene. In the 5'-proximal region, we also found a variable number of tandem repeats (VNTR) polymorphism that consisted of four different alleles with 4-6 tandem repeats of a 9-bp unit containing a putative Spl transcriptional factor binding site. One of these (R6), a frequent allele (23.6% of alleles tested) harboring six repeats, is novel, whereas the other three are known. In vitro analysis of the effect of each VNTR allele on promoter activity of a reporter gene was performed by a transient transfection assay. Data confirmed the modulator effect of the VNTR polymorphism on reporter gene transcription. Furthermore, the data demonstrate that allele R6 has the most potent inducing effects in the A549 cell line and, after IL-6 stimulation, in human pulmonary artery endothelial cells. Overall, the data demonstrate that CYP8A1 is polymorphic in Caucasians, and that a polymorphism affecting the 5'-proximal region may result in interindividual differences in CYP8A1 transcriptional regulation in vivo. Additional factors, such as the presence of inflammatory mediators, may be required to modulate transcription of the CYP8A1 gene.


Subject(s)
5' Untranslated Regions , Cytochrome P-450 Enzyme System/genetics , Intramolecular Oxidoreductases/genetics , Mutation , Base Sequence , Cells, Cultured , DNA , DNA Primers , Humans , Minisatellite Repeats , Molecular Sequence Data , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Single-Stranded Conformational
20.
Glycoconj J ; 18(9): 661-84, 2001 Sep.
Article in English | MEDLINE | ID: mdl-12386453

ABSTRACT

Human airway mucins represent a very broad family of polydisperse high molecular mass glycoproteins, which are part of the airway innate immunity. Apomucins, which correspond to their peptide part, are encoded by at least 6 different mucin genes (MUC1, MUC2, MUC4, MUC5B, MUC5AC and MUC7). The expression of some of these genes (at least MUC2 and MUC5AC) is induced by bacterial products, tobacco smoke and different cytokines. Human airway mucins are highly glycosylated (70-80% per weight). They contain from one single to several hundred carbohydrate chains. The carbohydrate chains that cover the apomucins are extremely diverse, adding to the complexity of these molecules. Structural information is available for more than 150 different O-glycan chains corresponding to the shortest chains (less than 12 sugars). The biosynthesis of these carbohydrate chains is a stepwise process involving many glycosyl- or sulfo-transferases. The only structural element shared by all mucin O-glycan chains is a GalNAc residue linked to a serine or threonine residue of the apomucin. There is growing evidence that the apomucin sequences influence the first glycosylation reactions. The elongation of the chains leads to various linear or branched extensions. Their non-reducing end, which corresponds to the termination of the chains, may bear different carbohydrate structures, such as histo-blood groups A or B determinants, H and sulfated H determinants, Lewis a, Lewis b, Lewis x or Lewis y epitopes, as well as sialyl- or sulfo- (sometimes sialyl- and sulfo-) Lewis a or Lewis x determinants. The synthesis of these different terminal determinants involves three different pathways with a whole set of glycosyl- and sulfo-transferases. Due to their wide structural diversity forming a combinatory of carbohydrate determinants as well as their location at the surface of the airways, mucins are involved in multiple interactions with microorganisms and are very important in the protection of the underlying airway mucosa. Airway mucins are oversulfated in cystic fibrosis and this feature has been considered as being linked to a primary defect of the disease. However, a similar pattern is observed in mucins from patients suffering from chronic bronchitis when they are severely infected. Airway mucins from severely infected patients suffering either from cystic fibrosis or from chronic bronchitis are also highly sialylated, and highly express sialylated and sulfated Lewis x determinants, a feature which may reflect severe mucosal inflammation or infection. These determinants are potential sites of attachment for Pseudomonas aeruginosa, the pathogen responsible for most of the morbidity and mortality in cystic fibrosis, and the expression of the sulfo- and glycosyl-transferases involved in their biosynthesis is increased by TNFalpha. In summary, airway inflammation may simultaneously induce the expression of mucin genes (MUC2 and MUC5AC) and the expression of several glycosyl- and sulfo-transferases, therefore modifying the combinatory glycosylation of these molecules.


Subject(s)
Cystic Fibrosis/metabolism , Mucins/physiology , Respiratory Mucosa/metabolism , Carbohydrate Conformation , Carbohydrate Sequence , Glycosylation , Humans , Molecular Sequence Data , Mucins/chemistry , Mucins/metabolism , Transferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...