Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38619319

ABSTRACT

Adult planarians can grow when fed and degrow (shrink) when starved while maintaining their whole-body shape. It is unknown how the morphogens patterning the planarian axes are coordinated during feeding and starvation or how they modulate the necessary differential tissue growth or degrowth. Here, we investigate the dynamics of planarian shape together with a theoretical study of the mechanisms regulating whole-body proportions and shape. We found that the planarian body proportions scale isometrically following similar linear rates during growth and degrowth, but that fed worms are significantly wider than starved worms. By combining a descriptive model of planarian shape and size with a mechanistic model of anterior-posterior and medio-lateral signaling calibrated with a novel parameter optimization methodology, we theoretically demonstrate that the feedback loop between these positional information signals and the shape they control can regulate the planarian whole-body shape during growth. Furthermore, the computational model produced the correct shape and size dynamics during degrowth as a result of a predicted increase in apoptosis rate and pole signal during starvation. These results offer mechanistic insights into the dynamic regulation of whole-body morphologies.


Subject(s)
Models, Biological , Planarians , Animals , Planarians/growth & development , Body Patterning , Signal Transduction , Apoptosis , Morphogenesis
2.
NPJ Syst Biol Appl ; 10(1): 35, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565850

ABSTRACT

Gene regulatory mechanisms (GRMs) control the formation of spatial and temporal expression patterns that can serve as regulatory signals for the development of complex shapes. Synthetic developmental biology aims to engineer such genetic circuits for understanding and producing desired multicellular spatial patterns. However, designing synthetic GRMs for complex, multi-dimensional spatial patterns is a current challenge due to the nonlinear interactions and feedback loops in genetic circuits. Here we present a methodology to automatically design GRMs that can produce any given two-dimensional spatial pattern. The proposed approach uses two orthogonal morphogen gradients acting as positional information signals in a multicellular tissue area or culture, which constitutes a continuous field of engineered cells implementing the same designed GRM. To efficiently design both the circuit network and the interaction mechanisms-including the number of genes necessary for the formation of the target spatial pattern-we developed an automated algorithm based on high-performance evolutionary computation. The tolerance of the algorithm can be configured to design GRMs that are either simple to produce approximate patterns or complex to produce precise patterns. We demonstrate the approach by automatically designing GRMs that can produce a diverse set of synthetic spatial expression patterns by interpreting just two orthogonal morphogen gradients. The proposed framework offers a versatile approach to systematically design and discover complex genetic circuits producing spatial patterns.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , Gene Regulatory Networks/genetics
3.
Animals (Basel) ; 14(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38539998

ABSTRACT

In recent decades, worldwide cetacean species have been protected, but they are still threatened. The bottlenose dolphin (Tursiops truncatus) is a vulnerable keystone species and a useful bioindicator of the health and balance of marine ecosystems in oceans all over the world. The genetic structure of the species is shaped by their niche specialization (along with other factors), leading to the classification of two ecotypes: coastal and pelagic. In this study, the genetic diversity, population structure, and ecotypes of bottlenose dolphins from the Canary Islands were assessed through the analysis of 49 new samples from biopsies and from stranded animals using the 636 bp portion of the mitochondrial control region and 343 individuals from databases (n = 392). The results reveal high genetic diversity in Canarian bottlenose dolphins (Hd = 0.969 and π = 0.0165) and the apparent lack of population genetic structure within this archipelago. High genetic structure (Fst, Φst) was found between the Canary Islands and coastal populations, while little to no structure was found with the pelagic populations. These results suggest that Canarian bottlenose dolphins are part of pelagic ecotype populations in the North Atlantic. The studied Special Areas of Conservation in the Canary Islands may correspond to a hotspot of genetic diversity of the species and could be a strategic area for the conservation of the oceanic ecotype of bottlenose dolphins.

4.
NAR Genom Bioinform ; 6(1): lqae010, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38312936

ABSTRACT

Numerous methods exist to produce and refine genome-scale metabolic models. However, due to the use of incompatible identifier systems for metabolites and reactions, computing and visualizing the metabolic differences and similarities of such models is a current challenge. Furthermore, there is a lack of automated tools that can combine the strengths of multiple reconstruction pipelines into a curated single comprehensive model by merging different drafts, which possibly use incompatible namespaces. Here we present mergem, a novel method to compare, merge, and translate two or more metabolic models. Using a universal metabolic identifier mapping system constructed from multiple metabolic databases, mergem robustly can compare models from different pipelines, merge their common elements, and translate their identifiers to other database systems. mergem is implemented as a command line tool, a Python package, and on the web-application Fluxer, which allows simulating and visually comparing multiple models with different interactive flux graphs. The ability to merge, compare, and translate diverse genome scale metabolic models can facilitate the curation of comprehensive reconstructions and the discovery of unique and common metabolic features among different organisms.

5.
bioRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37546866

ABSTRACT

Synthetic developmental biology aims to engineer gene regulatory mechanisms (GRMs) for understanding and producing desired multicellular patterns and shapes. However, designing GRMs for spatial patterns is a current challenge due to the nonlinear interactions and feedback loops in genetic circuits. Here we present a methodology to automatically design GRMs that can produce any given spatial pattern. The proposed approach uses two orthogonal morphogen gradients acting as positional information signals in a multicellular tissue area or culture, which constitutes a continuous field of engineered cells implementing the same designed GRM. To efficiently design both the circuit network and the interaction mechanisms-including the number of genes necessary for the formation of the target pattern-we developed an automated algorithm based on high-performance evolutionary computation. The tolerance of the algorithm can be configured to design GRMs that are either simple to produce approximate patterns or complex to produce precise patterns. We demonstrate the approach by automatically designing GRMs that can produce a diverse set of synthetic spatial expression patterns by interpreting just two orthogonal morphogen gradients. The proposed framework offers a versatile approach to systematically design and discover pattern-producing genetic circuits.

6.
STAR Protoc ; 3(3): 101458, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35733605

ABSTRACT

The synthesis of single-stranded riboprobes or double-stranded RNAs for in situ hybridization and gene knockdowns often use vectors that require time-consuming plasmid restriction digests and inefficient gel purifications. Here, we present a faster protocol for the simultaneous plasmid restriction digestion and Gibson assembly of vectors for the synthesis of both riboprobes and double-stranded RNAs for in situ and RNA interference experiments, respectively. We illustrate the protocol with planaria in situ and RNAi assays, but it is applicable to any organism.


Subject(s)
RNA, Double-Stranded , Cloning, Molecular , In Situ Hybridization , Plasmids/genetics , RNA Interference , RNA, Double-Stranded/genetics
7.
Methods Mol Biol ; 2399: 343-365, 2022.
Article in English | MEDLINE | ID: mdl-35604563

ABSTRACT

Extracting mechanistic knowledge from the spatial and temporal phenotypes of morphogenesis is a current challenge due to the complexity of biological regulation and their feedback loops. Furthermore, these regulatory interactions are also linked to the biophysical forces that shape a developing tissue, creating complex interactions responsible for emergent patterns and forms. Here we show how a computational systems biology approach can aid in the understanding of morphogenesis from a mechanistic perspective. This methodology integrates the modeling of tissues and whole-embryos with dynamical systems, the reverse engineering of parameters or even whole equations with machine learning, and the generation of precise computational predictions that can be tested at the bench. To implement and perform the computational steps in the methodology, we present user-friendly tools, computer code, and guidelines. The principles of this methodology are general and can be adapted to other model organisms to extract mechanistic knowledge of their morphogenesis.


Subject(s)
Computational Biology , Systems Biology , Computational Biology/methods , Computer Simulation , Models, Biological , Morphogenesis/physiology
8.
Methods Mol Biol ; 2450: 663-679, 2022.
Article in English | MEDLINE | ID: mdl-35359335

ABSTRACT

Regeneration experiments can produce complex phenotypes including morphological outcomes and gene expression patterns that are crucial for the understanding of the mechanisms of regeneration. However, due to their inherent complexity, variability between individuals, and heterogeneous data spreading across the literature, extracting mechanistic knowledge from them is a current challenge. Toward this goal, here we present protocols to unambiguously formalize the phenotypes of regeneration and their experimental procedures using precise mathematical morphological descriptions and standardized gene expression patterns. We illustrate the application of the methodology with step-by-step protocols for planaria and limb regeneration phenotypes. The curated datasets with these methods are not only helpful for human scientists, but they represent a key formalized resource that can be easily integrated into downstream reverse engineering methodologies for the automatic extraction of mechanistic knowledge. This approach can pave the way for discovering comprehensive systems-level models of regeneration.


Subject(s)
Planarians , Animals , Phenotype , Planarians/genetics
9.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: mdl-33834216

ABSTRACT

Reverse engineering mechanistic gene regulatory network (GRN) models with a specific dynamic spatial behavior is an inverse problem without analytical solutions in general. Instead, heuristic machine learning algorithms have been proposed to infer the structure and parameters of a system of equations able to recapitulate a given gene expression pattern. However, these algorithms are computationally intensive as they need to simulate millions of candidate models, which limits their applicability and requires high computational resources. Graphics processing unit (GPU) computing is an affordable alternative for accelerating large-scale scientific computation, yet no method is currently available to exploit GPU technology for the reverse engineering of mechanistic GRNs from spatial phenotypes. Here we present an efficient methodology to parallelize evolutionary algorithms using GPU computing for the inference of mechanistic GRNs that can develop a given gene expression pattern in a multicellular tissue area or cell culture. The proposed approach is based on multi-CPU threads running the lightweight crossover, mutation and selection operators and launching GPU kernels asynchronously. Kernels can run in parallel in a single or multiple GPUs and each kernel simulates and scores the error of a model using the thread parallelism of the GPU. We tested this methodology for the inference of spatiotemporal mechanistic gene regulatory networks (GRNs)-including topology and parameters-that can develop a given 2D gene expression pattern. The results show a 700-fold speedup with respect to a single CPU implementation. This approach can streamline the extraction of knowledge from biological and medical datasets and accelerate the automatic design of GRNs for synthetic biology applications.


Subject(s)
Algorithms , Computational Biology/methods , Computer Graphics , Gene Expression Profiling/methods , Gene Regulatory Networks/genetics , Models, Genetic , Computer Simulation , Humans , Reproducibility of Results , Software , Time Factors
10.
Biotechnol Bioeng ; 117(12): 3876-3890, 2020 12.
Article in English | MEDLINE | ID: mdl-32833226

ABSTRACT

Understanding the complex growth and metabolic dynamics in microorganisms requires advanced kinetic models containing both metabolic reactions and enzymatic regulation to predict phenotypic behaviors under different conditions and perturbations. Most current kinetic models lack gene expression dynamics and are separately calibrated to distinct media, which consequently makes them unable to account for genetic perturbations or multiple substrates. This challenge limits our ability to gain a comprehensive understanding of microbial processes towards advanced metabolic optimizations that are desired for many biotechnology applications. Here, we present an integrated computational and experimental approach for the development and optimization of mechanistic kinetic models for microbial growth and metabolic and enzymatic dynamics. Our approach integrates growth dynamics, gene expression, protein secretion, and gene-deletion phenotypes. We applied this methodology to build a dynamic model of the growth kinetics in batch culture of the bacterium Cellvibrio japonicus grown using either cellobiose or glucose media. The model parameters were inferred from an experimental data set using an evolutionary computation method. The resulting model was able to explain the growth dynamics of C. japonicus using either cellobiose or glucose media and was also able to accurately predict the metabolite concentrations in the wild-type strain as well as in ß-glucosidase gene deletion mutant strains. We validated the model by correctly predicting the non-diauxic growth and metabolite consumptions of the wild-type strain in a mixed medium containing both cellobiose and glucose, made further predictions of mutant strains growth phenotypes when using cellobiose and glucose media, and demonstrated the utility of the model for designing industrially-useful strains. Importantly, the model is able to explain the role of the different ß-glucosidases and their behavior under genetic perturbations. This integrated approach can be extended to other metabolic pathways to produce mechanistic models for the comprehensive understanding of enzymatic functions in multiple substrates.


Subject(s)
Bacterial Proteins , Cellvibrio , Gene Deletion , Models, Biological , beta-Glucosidase , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cellobiose/metabolism , Cellvibrio/enzymology , Cellvibrio/genetics , Kinetics , beta-Glucosidase/biosynthesis , beta-Glucosidase/genetics
11.
Nucleic Acids Res ; 48(W1): W427-W435, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32442279

ABSTRACT

Next-generation sequencing has paved the way for the reconstruction of genome-scale metabolic networks as a powerful tool for understanding metabolic circuits in any organism. However, the visualization and extraction of knowledge from these large networks comprising thousands of reactions and metabolites is a current challenge in need of user-friendly tools. Here we present Fluxer (https://fluxer.umbc.edu), a free and open-access novel web application for the computation and visualization of genome-scale metabolic flux networks. Any genome-scale model based on the Systems Biology Markup Language can be uploaded to the tool, which automatically performs Flux Balance Analysis and computes different flux graphs for visualization and analysis. The major metabolic pathways for biomass growth or for biosynthesis of any metabolite can be interactively knocked-out, analyzed and visualized as a spanning tree, dendrogram or complete graph using different layouts. In addition, Fluxer can compute and visualize the k-shortest metabolic paths between any two metabolites or reactions to identify the main metabolic routes between two compounds of interest. The web application includes >80 whole-genome metabolic reconstructions of diverse organisms from bacteria to human, readily available for exploration. Fluxer enables the efficient analysis and visualization of genome-scale metabolic models toward the discovery of key metabolic pathways.


Subject(s)
Metabolic Networks and Pathways/genetics , Software , Computer Graphics , Genome , Genomics/methods
12.
IEEE Trans Haptics ; 13(4): 699-708, 2020.
Article in English | MEDLINE | ID: mdl-32203027

ABSTRACT

Several previous works have studied the application of proxy-based rendering algorithms to underactuated haptic devices. However, all these works make oversimplifying assumptions about the configuration of the haptic device, and they ignore the user's intent. In this article, we lift those assumptions, and we carry out a theoretical study that unveils the existence of unnatural ghost forces under typical proxy-based rendering. We characterize and quantify those ghost forces. In addition, we design a novel rendering strategy, with anisotropic coupling between the device and the proxy. With this strategy, the forces rendered by an underactuated device are a best match of the forces rendered by a fully actuated device. We have demonstrated our findings on synthetic experiments and a simple real-world experiment.


Subject(s)
Algorithms , User-Computer Interface , Humans , Models, Theoretical
13.
Bioinformatics ; 36(9): 2881-2887, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31950976

ABSTRACT

MOTIVATION: Morphological and genetic spatial data from functional experiments based on genetic, surgical and pharmacological perturbations are being produced at an extraordinary pace in developmental and regenerative biology. However, our ability to extract knowledge from these large datasets are hindered due to the lack of formalization methods and tools able to unambiguously describe, centralize and interpret them. Formalizing spatial phenotypes and gene expression patterns is especially challenging in organisms with highly variable morphologies such as planarian worms, which due to their extraordinary regenerative capability can experimentally result in phenotypes with almost any combination of body regions or parts. RESULTS: Here, we present a computational methodology and mathematical formalism to encode and curate the morphological outcomes and gene expression patterns in planaria. Worm morphologies are encoded with mathematical graphs based on anatomical ontology terms to automatically generate reference morphologies. Gene expression patterns are registered to these standard reference morphologies, which can then be annotated automatically with anatomical ontology terms by analyzing the spatial expression patterns and their textual descriptions. This methodology enables the curation and annotation of complex experimental morphologies together with their gene expression patterns in a centralized standardized dataset, paving the way for the extraction of knowledge and reverse-engineering of the much sought-after mechanistic models in planaria and other regenerative organisms. AVAILABILITY AND IMPLEMENTATION: We implemented this methodology in a user-friendly graphical software tool, PlanGexQ, freely available together with the data in the manuscript at https://lobolab.umbc.edu/plangexq. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Planarians , Animals , Computational Biology , Gene Expression , Phenotype , Planarians/genetics , Software
14.
J Theor Biol ; 485: 110042, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31614131

ABSTRACT

Planarian worms reproduce asexually by fission, resulting in two separated pieces each repatterning and regenerating a complete animal. The induction of this process is known to be dependent on the size of the worm as well as on environmental factors such as population density, temperature, and light intensity. However, despite much progress in understanding the signaling mechanisms of planarian regeneration and the biomechanics of fissioning, no induction mechanism has been proposed for the signaling of fission. Here, we propose and analyze a cross-inhibited Turing system in a growing domain for the signaling of fission in planaria and the regeneration of the anterior-posterior opposite head and tail gene expression gradient patterns. This self-regulated mechanism explains when and where growing planaria fission, and its dependence on the worm length. Furthermore, we show how a delayed control mechanism of the cross-inhibited Turing system explains the asymmetry of the resulting fragments, the induction of fission with an anterior amputation even in a short worm, the consecutive multiple fissions called fragmentation, and the effects of environmental factors in the signaling of fission. We discuss the possible molecular and biophysical implementations of the proposed model and suggest specific experiments to elucidate them. In summary, the proposed controlled cross-inhibited Turing system represents a completely self-regulated model of the fission and regeneration signaling in planaria.


Subject(s)
Planarians , Reproduction, Asexual , Animals , Head , Planarians/genetics , Signal Transduction
15.
Biophys J ; 117(11): 2166-2179, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31732144

ABSTRACT

Cell-cell adhesion is essential for tissue growth and multicellular pattern formation and crucial for the cellular dynamics during embryogenesis and cancer progression. Understanding the dynamical gene regulation of cell adhesion molecules (CAMs) responsible for the emerging spatial tissue behaviors is a current challenge because of the complexity of these nonlinear interactions and feedback loops at different levels of abstraction-from genetic regulation to whole-organism shape formation. To extend our understanding of cell and tissue behaviors due to the regulation of adhesion molecules, here we present a novel, to our knowledge, model for the spatial dynamics of cellular patterning, growth, and shape formation due to the differential expression of CAMs and their regulation. Capturing the dynamic interplay between genetic regulation, CAM expression, and differential cell adhesion, the proposed continuous model can explain the complex and emergent spatial behaviors of cell populations that change their adhesion properties dynamically because of inter- and intracellular genetic regulation. This approach can demonstrate the mechanisms responsible for classical cell-sorting behaviors, cell intercalation in proliferating populations, and the involution of germ layer cells induced by a diffusing morphogen during gastrulation. The model makes predictions on the physical parameters controlling the amplitude and wavelength of a cellular intercalation interface, as well as the crucial role of N-cadherin regulation for the involution and migration of cells beyond the gradient of the morphogen Nodal during zebrafish gastrulation. Integrating the emergent spatial tissue behaviors with the regulation of genes responsible for essential cellular properties such as adhesion will pave the way toward understanding the genetic regulation of large-scale complex patterns and shapes formation in developmental, regenerative, and cancer biology.


Subject(s)
Cell Adhesion , Models, Biological , Gastrulation , Gene Expression Regulation
16.
Sci Rep ; 7: 41339, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28128301

ABSTRACT

Progress in regenerative medicine requires reverse-engineering cellular control networks to infer perturbations with desired systems-level outcomes. Such dynamic models allow phenotypic predictions for novel perturbations to be rapidly assessed in silico. Here, we analyzed a Xenopus model of conversion of melanocytes to a metastatic-like phenotype only previously observed in an all-or-none manner. Prior in vivo genetic and pharmacological experiments showed that individual animals either fully convert or remain normal, at some characteristic frequency after a given perturbation. We developed a Machine Learning method which inferred a model explaining this complex, stochastic all-or-none dataset. We then used this model to ask how a new phenotype could be generated: animals in which only some of the melanocytes converted. Systematically performing in silico perturbations, the model predicted that a combination of altanserin (5HTR2 inhibitor), reserpine (VMAT inhibitor), and VP16-XlCreb1 (constitutively active CREB) would break the all-or-none concordance. Remarkably, applying the predicted combination of three reagents in vivo revealed precisely the expected novel outcome, resulting in partial conversion of melanocytes within individuals. This work demonstrates the capability of automated analysis of dynamic models of signaling networks to discover novel phenotypes and predictively identify specific manipulations that can reach them.


Subject(s)
Melanocytes/metabolism , Models, Biological , Xenopus laevis/metabolism , Animals , Computer Simulation , Phenotype , Pigmentation , Reproducibility of Results , Signal Transduction
17.
Cell Mol Neurobiol ; 37(3): 453-460, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27140189

ABSTRACT

Thiamine (vitamin B1) is co-factor for three pivotal enzymes for glycolytic metabolism: pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, and transketolase. Thiamine deficiency leads to neurodegeneration of several brain regions, especially the cerebellum. In addition, several neurodegenerative diseases are associated with impairments of glycolytic metabolism, including Alzheimer's disease. Therefore, understanding the link between dysfunction of the glycolytic pathway and neuronal death will be an important step to comprehend the mechanism and progression of neuronal degeneration as well as the development of new treatment for neurodegenerative states. Here, using an in vitro model to study the effects of thiamine deficiency on cerebellum granule neurons, we show an increase in Ca2+ current density and CaV1.2 expression. These results indicate a link between alterations in glycolytic metabolism and changes to Ca2+ dynamics, two factors that have been implicated in neurodegeneration.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Cerebellum/pathology , Ion Channel Gating , Neurons/metabolism , Thiamine Deficiency/metabolism , Animals , Animals, Newborn , Immunoblotting , Rats, Wistar , Refractory Period, Electrophysiological , Thiamine Deficiency/physiopathology
18.
IEEE Trans Haptics ; 10(2): 254-264, 2017.
Article in English | MEDLINE | ID: mdl-27775909

ABSTRACT

Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches.


Subject(s)
Models, Biological , Touch Perception , Touch , User-Computer Interface , Virtual Reality , Equipment Design , Fingers , Humans , Physical Stimulation , Signal Processing, Computer-Assisted , Wearable Electronic Devices
19.
Regeneration (Oxf) ; 3(2): 78-102, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27499881

ABSTRACT

Planaria are complex metazoans that repair damage to their bodies and cease remodeling when a correct anatomy has been achieved. This model system offers a unique opportunity to understand how large-scale anatomical homeostasis emerges from the activities of individual cells. Much progress has been made on the molecular genetics of stem cell activity in planaria. However, recent data also indicate that the global pattern is regulated by physiological circuits composed of ionic and neurotransmitter signaling. Here, we overview the multi-scale problem of understanding pattern regulation in planaria, with specific focus on bioelectric signaling via ion channels and gap junctions (electrical synapses), and computational efforts to extract explanatory models from functional and molecular data on regeneration. We present a perspective that interprets results in this fascinating field using concepts from dynamical systems theory and computational neuroscience. Serving as a tractable nexus between genetic, physiological, and computational approaches to pattern regulation, planarian pattern homeostasis harbors many deep insights for regenerative medicine, evolutionary biology, and engineering.

20.
Bioinformatics ; 32(17): 2681-5, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27166245

ABSTRACT

MOTIVATION: Automated computational methods can infer dynamic regulatory network models directly from temporal and spatial experimental data, such as genetic perturbations and their resultant morphologies. Recently, a computational method was able to reverse-engineer the first mechanistic model of planarian regeneration that can recapitulate the main anterior-posterior patterning experiments published in the literature. Validating this comprehensive regulatory model via novel experiments that had not yet been performed would add in our understanding of the remarkable regeneration capacity of planarian worms and demonstrate the power of this automated methodology. RESULTS: Using the Michigan Molecular Interactions and STRING databases and the MoCha software tool, we characterized as hnf4 an unknown regulatory gene predicted to exist by the reverse-engineered dynamic model of planarian regeneration. Then, we used the dynamic model to predict the morphological outcomes under different single and multiple knock-downs (RNA interference) of hnf4 and its predicted gene pathway interactors ß-catenin and hh Interestingly, the model predicted that RNAi of hnf4 would rescue the abnormal regenerated phenotype (tailless) of RNAi of hh in amputated trunk fragments. Finally, we validated these predictions in vivo by performing the same surgical and genetic experiments with planarian worms, obtaining the same phenotypic outcomes predicted by the reverse-engineered model. CONCLUSION: These results suggest that hnf4 is a regulatory gene in planarian regeneration, validate the computational predictions of the reverse-engineered dynamic model, and demonstrate the automated methodology for the discovery of novel genes, pathways and experimental phenotypes. CONTACT: michael.levin@tufts.edu.


Subject(s)
Genes, Regulator , Hepatocyte Nuclear Factor 4 , Planarians , Regeneration , Animals , Computational Biology/methods , Computer Graphics , Databases, Factual , Humans , Models, Biological , Software
SELECTION OF CITATIONS
SEARCH DETAIL