Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 25(14): 16300-16309, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28789137

ABSTRACT

We propose the use of Manchester encoding in conjunction with balanced detection to overcome the mode partition noise (MPN) limit of quantum-dash Fabry-Perot mode-locked lasers (QD-MLLs) used as multi-wavelength sources in short-reach applications. The proposed approach is demonstrated for a 10-mode laser, each carrying a 10-Gb/s signal. We show that bit-error-rate floors as high as 10-4 when traditional non-return-to-zero (NRZ) modulation is employed with a single-ended detection scheme can be pushed below 10-9 thanks to the introduction of Manchester encoding together with balanced detection. The benefit of the scheme could be attributed to the spectral shift of the Manchester spectrum, resulting in a smaller overlap with the high-relative intensity noise (RIN) region present at low frequencies, and the use of balanced detection. We clarify the origin of the performance improvement through comparisons of single-ended and balanced detection and the use of a RIN emulation technique. We unambiguously show that the use of balanced detection plays the leading role in MPN mitigation enabled by Manchester modulation.

2.
Opt Express ; 17(20): 17747-57, 2009 Sep 28.
Article in English | MEDLINE | ID: mdl-19907561

ABSTRACT

We report on the experimental and theoretical study of a self-phase-modulation-based regenerator at 42.6 Gbit/s with a return-to-zero 33% format. We point out some detrimental effects such as intrachannel interactions and Brillouin scattering. An efficient solution, relying on a self-phase-modulation-based pulse compressor in combination with the regenerator, is proposed to overcome these detrimental phenomena. The experimental demonstration shows the effectiveness of a wavelength-transparent regenerator at 42.6 Gbit/s with a sensitivity-improvement of more than 5 dB and an eye-opening improvement of 2.3 dB in a back-to-back configuration, as well as a 10 times maximum transmission distance improvement for a BER of 10(-4).


Subject(s)
Filtration/instrumentation , Models, Theoretical , Optical Devices , Refractometry/instrumentation , Telecommunications/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Microwaves , Reproducibility of Results , Sensitivity and Specificity
3.
Opt Express ; 15(10): 6003-9, 2007 May 14.
Article in English | MEDLINE | ID: mdl-19546904

ABSTRACT

We report on a passive all-optical clock recovery technique based on data signal filtering with a Fabry-Perot filter, tested in a 40 Gb/s transmission system. We have simulated the clock recovery principle to choose the filter finesse and then investigate with experiment the method for 43 Gbit/s RZ signal clock recovery ahead of a receiver. We use Bit Error Rate assessment to demonstrate its system compatibility and to evaluate both its pattern sequence length tolerance and, for the first time, its clock locking range.

4.
Appl Opt ; 45(26): 6831-8, 2006 Sep 10.
Article in English | MEDLINE | ID: mdl-16926919

ABSTRACT

We observe the effects of a temperature increase on the characteristics of an InGaAs/InP multiple-quantum-well (MQW) saturable absorber (SA) in a microcavity provided by an optical input signal under normal incidence. The temperature increase on the nonlinear mirror (NLM) due to an optical signal depends on the energy time filling factor (FF) of this input signal (analogous to the signal's duty cycle, which is the ratio between the repetition period and the pulse duration) and hence depends on the repetition rate of the signal for a given pulse time width. This increase in temperature is mostly responsible for a shift in the reflectivity spectrum of the device toward higher wavelengths. In this experimental study, we show the shift of the resonance cavity versus the optical input power at high FF, and we evaluate the thermal time constant of an Fe-doped InGaAs/InP MQW NLM. Finally, we report the consequences of such thermal effects and high fluence on the reflectivity and contrast of two different InGaAs/InP NLMs when the input signal FF rises up to 25%, which gets close to telecommunication transmission conditions.

SELECTION OF CITATIONS
SEARCH DETAIL