Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 6(14): 3655-3667, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38989511

ABSTRACT

Fibrillar collagen accumulation emerges as a promising biomarker in several diseases, such as desmoplastic tumors and unstable atherosclerotic plaque. Gold nanorods (GNRs) hold great potential as contrast agents in high-resolution, biomedically safe, and non-invasive photoacoustic imaging (PAI). This study presents the design and characterization of a specialized imaging tool which exploits GNR assisted targeted photoacoustic imaging that is tailored for the identification of fibrillar collagen. In addition to the photoacoustic characterization of collagen in the NIR 1 and 2 regions, we demonstrate the detailed steps of conjugating a decoy to GNRs. This study serves as a proof of concept, that demonstrates that conjugated collagenase-1 (MMP-1) generates a distinct and collagen-specific photoacoustic signal, facilitating real-time visualization in the wavelength range of 700-970 nm (NIR I). As most of the reported studies utilized the endogenous contrast of collagen in the NIR II wavelength that has major limitations to perform in vivo deep tissue imaging, the approach that we are proposing is unique and it highlights the promise of MMP-1 decoy-functionalized GNRs as novel contrast agents for photoacoustic imaging of collagen in the NIR 1 region. To our knowledge this is the first time functionalized GNRs are optimized for the detection of fibrillar collagen and utilized in the field of non-invasive photoacoustic imaging that can facilitate a better prognosis of desmoplastic tumors and broken atherosclerotic plaques.

2.
ACS Sustain Chem Eng ; 11(49): 17285-17298, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38099084

ABSTRACT

Vat photopolymerization, a very efficient and precise object manufacturing technique, still strongly relies on the use of acrylate- and methacrylate-based formulations because of their low cost and high reactivity. However, the environmental impact of using fossil fuel-based, volatile, and toxic (meth)acrylic acid derivatives is driving the scientific community toward the development of alternatives that can match the mechanical performance and three-dimensional (3D) printing processability of traditional photocurable mixtures but are made from environmentally friendly building blocks. Herein, itaconic acid is polymerized with polyols derived from naturally occurring terpenes to produce photocurable poly(ester-thioether)s. The formulation of such polymers using itaconic acid-based reactive diluents allows the preparation of a series of (meth)acrylate-free photocurable resins, which can be 3D printed into solid objects. Extensive analysis has been conducted on the properties of photocured polymers including their thermal, thermomechanical, and mechanical characteristics. The findings suggest that these materials exhibit properties comparable to those of traditional alternatives that are created using harmful and toxic blends. Notably, the photocured polymers are composed of biobased constituents ranging from 75 to 90 wt %, which is among the highest values ever recorded for vat photopolymerization applications.

3.
Sci Rep ; 13(1): 4630, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944737

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system and the diagnosis is often dismal. GBM pharmacological treatment is strongly limited by its intracranial location beyond the blood-brain barrier (BBB). While Temozolomide (TMZ) exhibits the best clinical performance, still less than 20% crosses the BBB, therefore requiring administration of very high doses with resulting unnecessary systemic side effects. Here, we aimed at designing new negative temperature-responsive gel formulations able to locally release TMZ beyond the BBB. The biocompatibility of a chitosan-ß-glycerophosphate-based thermogel (THG)-containing mesoporous SiO2 nanoparticles (THG@SiO2) or polycaprolactone microparticles (THG@PCL) was ascertained in vitro and in vivo by cell counting and histological examination. Next, we loaded TMZ into such matrices (THG@SiO2-TMZ and THG@PCL-TMZ) and tested their therapeutic potential both in vitro and in vivo, in a glioblastoma resection and recurrence mouse model based on orthotopic growth of human cancer cells. The two newly designed anticancer formulations, consisting in TMZ-silica (SiO2@TMZ) dispersed in the thermogel matrix (THG@SiO2-TMZ) and TMZ, spray-dried on PLC and incorporated into the thermogel (THG@PCL-TMZ), induced cell death in vitro. When applied intracranially to a resected U87-MG-Red-FLuc human GBM model, THG@SiO2-TMZ and THG@PCL-TMZ caused a significant reduction in the growth of tumor recurrences, when compared to untreated controls. THG@SiO2-TMZ and THG@PCL-TMZ are therefore new promising gel-based local therapy candidates for the treatment of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Mice , Animals , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/pathology , Heterografts , Silicon Dioxide/pharmacology , Cell Line, Tumor , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/drug therapy , Brain Neoplasms/pathology , Xenograft Model Antitumor Assays , Drug Resistance, Neoplasm , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
4.
Photoacoustics ; 28: 100400, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36386292

ABSTRACT

Detection and removal of bladder cancer lesions at an early stage is crucial for preventing tumor relapse and progression. This study aimed to develop a new technological platform for the visualization of small and flat urothelial lesions of high-grade bladder carcinoma in situ (CIS). We found that the integrin α5ß1, overexpressed in bladder cancer cell lines, murine orthotopic bladder cancer and human bladder CIS, can be exploited as a receptor for targeted delivery of GNRs functionalized with the cyclic CphgisoDGRG peptide (Iso4). The GNRs@Chit-Iso4 was stable in urine and selectively recognized α5ß1 positive neoplastic urothelium, while low frequency ultrasound-assisted shaking of intravesically instilled GNRs@Chit-Iso4 allowed the distribution of nanoparticles across the entire volume of the bladder. Photoacoustic imaging of GNRs@Chit-Iso4 bound to tumor cells allowed for the detection of neoplastic lesions smaller than 0.5 mm that were undetectable by ultrasound imaging and bioluminescence.

5.
Pharmaceutics ; 14(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36297659

ABSTRACT

Small interfering RNA (siRNA) therapies require effective delivery vehicles capable of carrying the siRNA cargo into target cells. To achieve tumor-targeting, a drug delivery system would have to incorporate ligands that specifically bind to receptors expressed on cancer cells to function as portals via receptor-mediated endocytosis. Cell-targeting and internalizing aptamers are the most suitable ligands for functionalization of drug-loaded nanocarriers. Here, we designed a novel aptamer-based platform for the active delivery of siRNA targeting programmed cell death-ligand 1 (PD-L1) to triple-negative breast cancer (TNBC) cells. The generated nanovectors consist of PLGA-based polymeric nanoparticles, which were loaded with PD-L1 siRNA and conjugated on their surface with a new RNA aptamer, specific for TNBC and resistant to nucleases. In vitro results demonstrated that these aptamer-conjugated nanoparticles promote siRNA uptake specifically into TNBC MDA-MB-231 and BT-549 target cells, along with its endosomal release, without recognizing non-TNBC BT-474 breast cancer cells. Their efficiency resulted in an almost complete suppression of PD-L1 expression as early as 90 min of cell treatment. This research provides a rational strategy for optimizing siRNA delivery systems for TNBC treatments.

6.
Biomolecules ; 12(9)2022 08 23.
Article in English | MEDLINE | ID: mdl-36139004

ABSTRACT

Microcrystalline cellulose (MCC) is an emerging material with outstanding properties in many scientific and industrial fields, in particular as an additive in composite materials. Its surface modification allows for the fine-tuning of its properties and the exploitation of these materials in a plethora of applications. In this paper, we present the covalent linkage of a luminescent Ir-complex onto the surface of MCC, representing the first incorporation of an organometallic luminescent probe in this biomaterial. This goal has been achieved with an easy and sustainable procedure, which employs a Bronsted-acid ionic liquid as a catalyst for the esterification reaction of -OH cellulose surface groups. The obtained luminescent cellulose microcrystals display high and stable emissions with the incorporation of only a small amount of iridium (III). Incorporation of MCC-Ir in dry and wet matrices, such as films and gels, has been also demonstrated, showing the maintenance of the luminescent properties even in possible final manufacturers.


Subject(s)
Ionic Liquids , Iridium , Biocompatible Materials , Cellulose/chemistry , Ionic Liquids/chemistry , Iridium/chemistry , Luminescence
7.
J Exp Clin Cancer Res ; 40(1): 239, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34294133

ABSTRACT

BACKGROUND: Management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and limited targeted treatment options. Cisplatin represents a promising chemotherapeutic compound in neoadjuvant approaches and in the metastatic setting, but its use is limited by scarce bioavailability, severe systemic side effects and drug resistance. Novel site-directed aptamer-based nanotherapeutics have the potential to overcome obstacles of chemotherapy. In this study we investigated the tumor targeting and the anti-tumorigenic effectiveness of novel cisplatin-loaded and aptamer-decorated nanosystems in TNBC. METHODS: Nanotechnological procedures were applied to entrap cisplatin at high efficacy into polymeric nanoparticles (PNPs) that were conjugated on their surface with the epidermal growth factor receptor (EGFR) selective and cell-internalizing CL4 aptamer to improve targeted therapy. Internalization into TNBC MDA-MB-231 and BT-549 cells of aptamer-decorated PNPs, loaded with BODIPY505-515, was monitored by confocal microscopy using EGFR-depleted cells as negative control. Tumor targeting and biodistribution was evaluated by fluorescence reflectance imaging upon intravenously injection of Cyanine7-labeled nanovectors in nude mice bearing subcutaneous MDA-MB-231 tumors. Cytotoxicity of cisplatin-loaded PNPs toward TNBC cells was evaluated by MTT assay and the antitumor effect was assessed by tumor growth experiments in vivo and ex vivo analyses. RESULTS: We demonstrate specific, high and rapid uptake into EGFR-positive TNBC cells of CL4-conjugated fluorescent PNPs which, when loaded with cisplatin, resulted considerably more cytotoxic than the free drug and nanovectors either unconjugated or conjugated with a scrambled aptamer. Importantly, animal studies showed that the CL4-equipped PNPs achieve significantly higher tumor targeting efficiency and enhanced therapeutic effects, without any signs of systemic toxicity, compared with free cisplatin and untargeted PNPs. CONCLUSIONS: Our study proposes novel and safe drug-loaded targeted nanosystems for EGFR-positive TNBC with excellent potential for the application in cancer diagnosis and therapy.


Subject(s)
Cisplatin/therapeutic use , ErbB Receptors/metabolism , Triple Negative Breast Neoplasms/drug therapy , Animals , Cisplatin/pharmacology , Humans , Mice , Nanoparticles , SELEX Aptamer Technique
8.
Nanomaterials (Basel) ; 11(4)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916739

ABSTRACT

Photothermal therapy has always been a very attractive anti-cancer strategy, drawing a lot of attention thanks to its excellent performance as a non-invasive and pretty safe technique. Lately, nanostructures have become the main characters of the play of cancer therapy due to their ability to absorb near-infrared radiation and efficient light-to-heat conversion. Here we present the synthesis of polyethylene glycol (PEG)-stabilized hybrid ultrasmall (<20 nm) gold-silver nanotriangles (AuAgNTrs) and their application in photothermal therapy. The obtained AuAgNTrs were deeply investigated using high-resolution transmission electron microscopy (HR-TEM). The cell viability assay was performed on U-87 glioblastoma multiforme cell model. Excellent photothermal performance of AuAgNTrs upon irradiation with NIR laser was demonstrated in suspension and in vitro, with >80% cell viability decrease already after 10 min laser irradiation with a laser power P = 3W/cm2 that was proved to be harmless to the control cells. Moreover, a previous cell viability test had shown that the nanoparticles themselves were reasonably biocompatible: without irradiation cell viability remained high. Herein, we show that our hybrid AuAgNTrs exhibit very exciting potential as nanostructures for hyperthermia cancer therapy, mostly due to their easy synthesis protocol, excellent cell compatibility and promising photothermal features.

9.
RSC Adv ; 11(62): 39004-39026, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-35492476

ABSTRACT

In recent years, the interest regarding the use of proteins as renewable resources has deeply intensified. The strongest impact of these biomaterials is clear in the field of smart medicines and biomedical engineering. Zein, a vegetal protein extracted from corn, is a suitable biomaterial for all the above-mentioned purposes due to its biodegradability and biocompatibility. The controlled drug delivery of small molecules, fabrication of bioactive membranes, and 3D assembly of scaffold for tissue regeneration are just some of the topics now being extensively investigated and reported in the literature. Herein, we review the recent literature on zein as a biopolymer and its applications in the biomedical world, focusing on the different shapes and sizes through which it can be manipulated.

10.
Int J Nanomedicine ; 15: 9909-9937, 2020.
Article in English | MEDLINE | ID: mdl-33335392

ABSTRACT

Presently, a plenty of concerns related to the environment are due to the overuse of petroleum-based chemicals and products; the synthesis of functional materials, starting from the natural sources, is the current trend in research. The interest for nanocellulose has recently increased in a huge range of fields, from the material science to the biomedical engineering. Nanocellulose gained this leading role because of several reasons: its natural abundance on this planet, the excellent mechanical and optical features, the good biocompatibility and the attractive capability of undergoing surface chemical modifications. Nanocellulose surface tuning techniques are adopted by the high reactivity of the hydroxyl groups available; the chemical modifications are mainly performed to introduce either charged or hydrophobic moieties that include amination, esterification, oxidation, silylation, carboxymethylation, epoxidation, sulfonation, thiol- and azido-functional capability. Despite the several already published papers regarding nanocellulose, the aim of this review involves discussing the surface chemical functional capability of nanocellulose and the subsequent applications in the main areas of nanocellulose research, such as drug delivery, biosensing/bioimaging, tissue regeneration and bioprinting, according to these modifications. The final goal of this review is to provide a novel and unusual overview on this topic that is continuously under expansion for its intrinsic sophisticated properties.


Subject(s)
Biomedical Engineering/methods , Cellulose/chemistry , Nanomedicine/methods , Nanostructures/chemistry , Cellulose/pharmacology , Surface Properties
11.
Int J Nanomedicine ; 14: 1877-1892, 2019.
Article in English | MEDLINE | ID: mdl-30936691

ABSTRACT

INTRODUCTION AND PURPOSE: Cancer stem cells (CSCs) present a higher capacity to evade being killed by cancer agents and developing chemoresistance, thus leading to failure of conventional anticancer therapeutics. Nanomaterials specifically designed for targeting and treating not only tumor cells, but also CSCs, may encompass therapeutic and diagnostic tools, thus successfully eradicating the tumor. MATERIALS AND METHODS: Polymeric micelles simultaneously loaded with gold nanorods (GNRs) and Adriamycin were prepared and used as a novel therapeutic and diagnostic weapon. Epithelial cell adhesion molecule (EpCAM) is an important CSC surface marker and has been exploited in this work as an active targeting agent. Photoacoustic imaging was applied for GNR individuation and tissue recognition. RESULTS: The nanosystem was demonstrated to be able to elicit effective targeting of cancer cells and cause their killing, in particular under laser ablation. Moreover, ex vivo photoacoustic imaging is able to clearly identify tumor regions thanks to GNR's contrast. CONCLUSION: The nanosystem can be considered a powerful and promising theranostic weapon for hepatocellular carcinoma treatment.


Subject(s)
Doxorubicin/administration & dosage , Drug Delivery Systems/methods , Epithelial Cell Adhesion Molecule/immunology , Nanotubes/chemistry , Photoacoustic Techniques/methods , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Drug Delivery Systems/instrumentation , Gold/chemistry , Humans , Laser Therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Male , Mice, Inbred C57BL , Micelles , Molecular Targeted Therapy/instrumentation , Molecular Targeted Therapy/methods , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Photoacoustic Techniques/instrumentation , Theranostic Nanomedicine/instrumentation , Theranostic Nanomedicine/methods , Xenograft Model Antitumor Assays
12.
Biomater Sci ; 7(5): 1746-1775, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30901017

ABSTRACT

Photoacoustic (PA) imaging is indeed one of the most promising bioimaging techniques for theranostics applications in humans, allowing for the visualization of blood vessels and melanomas with high spatial resolution. However, in order to overcome the endogenous contrast arising from interfering endogenous species such as haemoglobin and melanin, specific contrast agents need to be developed, allowing PAI to successfully identify targeted contrast in the range of wavelengths in which interference from the biomatrix is minimized. This has been first performed by small molecule dyes, which, however, suffer from some important limitations such as low hydrophilicity and short circulation times. For this reason, scientific research has recently directed its efforts towards the development of nanostructured contrast agents capable of providing efficient PA contrast at low concentrations with low toxicity and high biocompatibility. The principal nanostructures are based on (1) metal and semiconducting nanoparticles, amongst which variously shaped nano-gold plays the main role, (2) carbon nanomaterials, such as carbon nanotubes and graphene, and (3) conjugated polymer nanoparticles. In this review, the principal characteristics of this class of materials are reported and greater focus is directed towards in vivo studies. A detailed analysis is performed on various physical-chemical parameters that define the PA response of reported contrast agents, like absorption coefficients and photoacoustic efficiencies. By comparing the experimental data, this review provides a comprehensive tool for the evaluation of new nanostructured contrast agents for PA imaging.


Subject(s)
Contrast Media/chemistry , Nanostructures , Photoacoustic Techniques/methods , Animals , Humans , Nanotechnology
13.
ACS Macro Lett ; 8(4): 414-420, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-35651125

ABSTRACT

We report on the fabrication and electro-mechanical characterization of a nanocomposite system exhibiting anisotropic electrical response under the application of tactile compressive stresses (5 kPa) at low frequencies (0.1-1 Hz). The nanocomposite is based on a chemically cross-linked gel incorporating a highly conductive ionic liquid and surface functionalized barium titanate (BaTiO3) ferroelectric nanoparticles. The system was engineered to respond to mechanical stimulations by combining piezoionic and piezoelectric activity, generating electric charge due to a redistribution of the mobile ions across the polymer matrix and to the presence of the electrically polarized ceramic nanoparticles, respectively. The nanocomposite response was characterized in a quasi-static regime using a custom-designed apparatus. The results obtained showed that the combination of both piezo-effects led to output voltages up to 8 mV and anisotropy in the response. This allows to discriminate the sample orientation with respect to the load direction by monitoring the phase and amplitude modulation of the output signal. The integration of cluster-assembled gold electrodes produced by Supersonic Cluster Beam Deposition (SCBD) was also performed, enabling to enhance the charge transduction efficiency by a factor of 10, compared to the bare nanocomposite. This smart piezoionic/piezoelectric nanocomposite represents an interesting solution for the development of soft devices for discriminative touch sensing and objects localization in physically unstructured environments.

14.
Cell Death Dis ; 9(9): 895, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30166519

ABSTRACT

MRE11 is a component of the MRE11/RAD50/NBS1 (MRN) complex, whose activity is essential to control faithful DNA replication and to prevent accumulation of deleterious DNA double-strand breaks. In humans, hypomorphic mutations in these genes lead to DNA damage response (DDR)-defective and cancer-prone syndromes. Moreover, MRN complex dysfunction dramatically affects the nervous system, where MRE11 is required to restrain MYCN-dependent replication stress, during the rapid expansion of progenitor cells. MYCN activation, often due to genetic amplification, represents the driving oncogenic event for a number of human tumors, conferring bad prognosis and predicting very poor responses even to the most aggressive therapeutic protocols. This is prototypically exemplified by neuroblastoma, where MYCN amplification occurs in about 25% of the cases. Intriguingly, MRE11 is highly expressed and predicts bad prognosis in MYCN-amplified neuroblastoma. Due to the lack of direct means to target MYCN, we explored the possibility to trigger intolerable levels of replication stress-dependent DNA damage, by inhibiting MRE11 in MYCN-amplified preclinical models. Indeed, either MRE11 knockdown or its pharmacological inhibitor mirin induce accumulation of replication stress and DNA damage biomarkers in MYCN-amplified cells. The consequent DDR recruits p53 and promotes a p53-dependent cell death, as indicated by p53 loss- and gain-of-function experiments. Encapsulation of mirin in nanoparticles allowed its use on MYCN-amplified neuroblastoma xenografts in vivo, which resulted in a sharp impairment of tumor growth, associated with DDR activation, p53 accumulation, and cell death. Therefore, we propose that MRE11 inhibition might be an effective strategy to treat MYCN-amplified and p53 wild-type neuroblastoma, and suggest that targeting replication stress with appropriate tools should be further exploited to tackle MYCN-driven tumors.


Subject(s)
MRE11 Homologue Protein/antagonists & inhibitors , MRE11 Homologue Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/drug therapy , Pyrimidinones/pharmacology , Thiones/pharmacology , 3T3 Cells , A549 Cells , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Damage/genetics , Female , HEK293 Cells , Hep G2 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neuroblastoma/pathology , Prognosis , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
15.
ChemMedChem ; 13(17): 1744-1750, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29966045

ABSTRACT

A novel and straightforward synthesis of highly substituted isoquinoline-5,8-dione fused tricyclic pyrazoles is reported. The key step of the synthetic sequence is a regioselective, Ag2 CO3 promoted, 1,3-dipolar cycloaddition of C-heteroaryl-N-aryl nitrilimines and substituted isoquinoline-5,8-diones. The broad functional group tolerability and mild reaction conditions were found to be suitable for the preparation of a small library of compounds. These scaffolds were designed to interact with multiple biological residues, and two of them, after brief synthetic elaborations, were analyzed by molecular docking studies as potential anticancer drugs. In vitro studies confirmed the potent anticancer effects, showing promising IC50 values as low as 2.5 µm against three different glioblastoma cell lines. Their cytotoxic activity was finally positively correlated to their ability to inhibit PI3K/mTOR kinases, which are responsible for the regulation of diverse cellular processes in human cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoquinones/chemistry , Benzoquinones/pharmacology , Central Nervous System Neoplasms/drug therapy , Glioblastoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/pathology , Cycloaddition Reaction , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Molecular Structure , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolism
16.
J Mater Chem B ; 6(19): 2993-2999, 2018 May 21.
Article in English | MEDLINE | ID: mdl-32254334

ABSTRACT

Herein we report the synthesis of a resilient nanosystem based on silica-coated magnetic MnFe2O3 nanoparticles conjugated to fluorescein and PEGylated gold nanorods embedded in polymeric micelles (MnFe2O4@SiO2@GNRs@PMs), for magnetic-photoacoustic-optical triple-modality imaging. The magnetic relaxivity of the nanosystem has been evaluated, revealing high r2/r1 ratios that suggest the effectiveness of the nanosystem as the T2-contrast agent. In addition, contrast-based fluorescence imaging has been tested both in vitro and ex vivo, showing that the nanosystem exhibits the suitable optical properties of fluorescein, with contrast intensities comparable with previously reported results. Finally, photoacoustic, due to gold nanorods, performances of the nanosystem have been evaluated, revealing good linearity between concentration and photoacoustic response in the 25-250 nM concentration under irradiation at 690 nm. The results showed a contrast-to-noise ratio (CNR) as high as 60 in a mouse leg subcutaneously injected with the nanosystem. Biocompatibility studies revealed no hemolytic effect induced by the nanoconstruct, revealing the applicability of the studied diagnostic tool for medical studies.

17.
ACS Med Chem Lett ; 8(12): 1230-1235, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29259739

ABSTRACT

Head and neck squamous cell carcinomas (HNSCC) are a diverse group of tumors with high morbidity and mortality that have remained mostly unchanged over the past decades. The epidermal growth factor receptor (EGFR) is often overexpressed and activated in these tumors and strongly contributes to their pathogenesis. Still, EGFR-targeted therapies such as monoclonal antibodies and kinase inhibitors have demonstrated only limited improvements in the clinical outcome of this disease. Here, we take advantage of the extraordinary affinity of EGF for its cognate receptor to specifically target magnetite-containing nanoparticles to HNSCC cells and mediate, in vitro, their cellular upload. On the basis of this, we show efficient accumulation, in vivo, of such nanoparticles in subcutaneous xenograft tumor tissues in sufficient amounts to be able to mediate visualization by magnetic resonance imaging. Overall, our EGF-coated nanosystem may warrant, in the near future, novel and very efficient theranostic approaches to HNSCC.

19.
J Med Chem ; 60(10): 4510-4516, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28471660

ABSTRACT

Polymeric nanoparticles (PNPs) may efficiently deliver in vivo therapeutics to tumors when conjugated to specific targeting agents. Gint4.T aptamer specifically recognizes platelet-derived growth factor receptor ß and can cross the blood-brain barrier (BBB). We synthesized Gint4.T-conjugated PNPs able of high uptake into U87MG glioblastoma (GBM) cells and with astonishing EC50 value (38 pM) when loaded with a PI3K-mTOR inhibitor. We also demonstrated in vivo BBB passage and tumor accumulation in a GBM orthotopic model.


Subject(s)
Aptamers, Nucleotide/chemistry , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Drug Carriers/chemistry , Glioblastoma/drug therapy , Nanoparticles/chemistry , Protein Kinase Inhibitors/administration & dosage , Aptamers, Nucleotide/metabolism , Brain Neoplasms/metabolism , Cell Line, Tumor , Drug Carriers/metabolism , Drug Delivery Systems , Glioblastoma/metabolism , Humans , Nanoparticles/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Polymers/chemistry , Polymers/metabolism , Protein Kinase Inhibitors/pharmacokinetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
20.
Bioconjug Chem ; 28(5): 1382-1390, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28453929

ABSTRACT

In this work, iron/silica/gold core-shell nanoparticles (Fe3O4@SiO2@Au NPs) characterized by magnetic and optical properties have been synthesized to obtain a promising theranostic platform. To improve their biocompatibility, the obtained multilayer nanoparticles have been entrapped in polymeric micelles, decorated with folic acid moieties, and tested in vivo for photoacoustic and magnetic resonance imaging detection of ovarian cancer.


Subject(s)
Ferric Compounds/chemistry , Gold/chemistry , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/administration & dosage , Ovarian Neoplasms/pathology , Photoacoustic Techniques/methods , Polymers/chemistry , Silicon Dioxide/chemistry , Animals , Cell Proliferation/drug effects , Female , Folic Acid/chemistry , Humans , Image Processing, Computer-Assisted/methods , Magnetite Nanoparticles/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Micelles , Multimodal Imaging/methods , Ovarian Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL