Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Ann N Y Acad Sci ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771698

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. The immunosuppressive functions of regulatory T lymphocytes (Tregs) are impaired in ALS, and correlate to disease progression. The phase 2a IMODALS trial reported an increase in Treg number in ALS patients following the administration of low-dose (ld) interleukin-2 (IL-2). We propose a pharmacometabolomics approach to decipher metabolic modifications occurring in patients treated with ld-IL-2 and its relationship with Treg response. Blood metabolomic profiles were determined on days D1, D64, and D85 from patients receiving 2 MIU of IL-2 (n = 12) and patients receiving a placebo (n = 12). We discriminated the three time points for the treatment group (average error rate of 42%). Among the important metabolites, kynurenine increased between D1 and D64, followed by a reduction at D85. The percentage increase of Treg number from D1 to D64, as predicted by the metabolome at D1, was highly correlated with the observed value. This study provided a proof of concept for metabolic characterization of the effect of ld-IL-2 in ALS. These data could present advances toward a personalized medicine approach and present pharmacometabolomics as a key tool to complement genomic and transcriptional data for drug characterization, leading to systems pharmacology.

2.
Cancer Res ; 84(7): 1165-1177, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38315789

ABSTRACT

Artificial intelligence (AI)-powered approaches are becoming increasingly used as histopathologic tools to extract subvisual features and improve diagnostic workflows. On the other hand, hi-plex approaches are widely adopted to analyze the immune ecosystem in tumor specimens. Here, we aimed at combining AI-aided histopathology and imaging mass cytometry (IMC) to analyze the ecosystem of non-small cell lung cancer (NSCLC). An AI-based approach was used on hematoxylin and eosin (H&E) sections from 158 NSCLC specimens to accurately identify tumor cells, both adenocarcinoma and squamous carcinoma cells, and to generate a classifier of tumor cell spatial clustering. Consecutive tissue sections were stained with metal-labeled antibodies and processed through the IMC workflow, allowing quantitative detection of 24 markers related to tumor cells, tissue architecture, CD45+ myeloid and lymphoid cells, and immune activation. IMC identified 11 macrophage clusters that mainly localized in the stroma, except for S100A8+ cells, which infiltrated tumor nests. T cells were preferentially localized in peritumor areas or in tumor nests, the latter being associated with better prognosis, and they were more abundant in highly clustered tumors. Integrated tumor and immune classifiers were validated as prognostic on whole slides. In conclusion, integration of AI-powered H&E and multiparametric IMC allows investigation of spatial patterns and reveals tissue relevant features with clinical relevance. SIGNIFICANCE: Leveraging artificial intelligence-powered H&E analysis integrated with hi-plex imaging mass cytometry provides insights into the tumor ecosystem and can translate tumor features into classifiers to predict prognosis, genotype, and therapy response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Artificial Intelligence , Ecosystem , Image Cytometry
3.
Biomed Pharmacother ; 165: 115008, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37442065

ABSTRACT

Raloxifene belongs to the family of Selective Estrogen Receptor Modulators (SERMs), which are drugs widely prescribed for Estrogen Receptor alpha (ERα)-related pathologies. Recently, SERMs are being tested in repurposing strategies for ERα-independent clinical indications, including a wide range of microbial infections. Macrophages are central in the fight against pathogen invasion. Despite estrogens have been shown to regulate macrophage phenotype, SERMs activity in these cells is still poorly defined. We investigated the activity of Raloxifene in comparison with another widely used SERM, Tamoxifen, on immune gene expression in macrophages obtained from mouse and human tissues, including mouse peritoneal macrophages, bone marrow-derived macrophages, microglia or human blood-derived macrophages, assaying for the involvement of the ERα, PI3K and NRF2 pathways also under inflammatory conditions. Our data demonstrate that Raloxifene acts by a dual mechanism, which entails ERα antagonism and off-target mediators. Moreover, micromolar concentrations of Raloxifene increase the expression of immune metabolic genes, such as Vegfa and Hmox1, through PI3K and NRF2 activation selectively in peritoneal macrophages. Conversely, Il1b mRNA down-regulation by SERMs is consistently observed in all macrophage subtypes and unrelated to the PI3K/NRF2 system. Importantly, the production of the inflammatory cytokine TNFα induced by the bacterial endotoxin, LPS, is potentiated by SERMs and paralleled by the cell subtype-specific increase in IL1ß secretion. This work extends our knowledge on the biological and molecular mechanisms of SERMs immune activity and indicate macrophages as a pharmacological target for the exploitation of the antimicrobial potential of these drugs.


Subject(s)
Raloxifene Hydrochloride , Selective Estrogen Receptor Modulators , Mice , Humans , Animals , Selective Estrogen Receptor Modulators/pharmacology , Raloxifene Hydrochloride/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Down-Regulation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Tamoxifen/pharmacology , Macrophages/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism
4.
JCI Insight ; 8(5)2023 03 08.
Article in English | MEDLINE | ID: mdl-36883568

ABSTRACT

WHIM syndrome is an inherited immune disorder caused by an autosomal dominant heterozygous mutation in CXCR4. The disease is characterized by neutropenia/leukopenia (secondary to retention of mature neutrophils in bone marrow), recurrent bacterial infections, treatment-refractory warts, and hypogammaglobulinemia. All mutations reported in WHIM patients lead to the truncations in the C-terminal domain of CXCR4, R334X being the most frequent. This defect prevents receptor internalization and enhances both calcium mobilization and ERK phosphorylation, resulting in increased chemotaxis in response to the unique ligand CXCL12. Here, we describe 3 patients presenting neutropenia and myelokathexis, but normal lymphocyte count and immunoglobulin levels, carrying what we believe to be a novel Leu317fsX3 mutation in CXCR4, leading to a complete truncation of its intracellular tail. The analysis of the L317fsX3 mutation in cells derived from patients and in vitro cellular models reveals unique signaling features in comparison with R334X mutation. The L317fsX3 mutation impairs CXCR4 downregulation and ß-arrestin recruitment in response to CXCL12 and reduces other signaling events - including ERK1/2 phosphorylation, calcium mobilization, and chemotaxis - all processes that are typically enhanced in cells carrying the R334X mutation. Our findings suggest that, overall, the L317fsX3 mutation may be causative of a form of WHIM syndrome not associated with an augmented CXCR4 response to CXCL12.


Subject(s)
GTP-Binding Proteins , Primary Immunodeficiency Diseases , beta-Arrestins , Humans , beta-Arrestin 1/genetics , beta-Arrestin 1/immunology , beta-Arrestins/genetics , beta-Arrestins/immunology , Calcium/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/immunology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Mutation , Neutropenia/genetics , Neutropenia/immunology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Signal Transduction/genetics , Signal Transduction/physiology , Warts/genetics , Warts/immunology
5.
Front Mol Biosci ; 9: 1060555, 2022.
Article in English | MEDLINE | ID: mdl-36483536

ABSTRACT

ACKR2 is an atypical chemokine receptor which is structurally uncoupled from G proteins and is unable to activate signaling pathways used by conventional chemokine receptors to promote cell migration. Nonetheless, ACKR2 regulates inflammatory and immune responses by shaping chemokine gradients in tissues via scavenging inflammatory chemokines. To investigate the signaling pathways downstream to ACKR2, a quantitative SILAC-based phosphoproteomic analysis coupled with a systems biology approach with network analysis, was carried out on a HEK293 cell model expressing either ACKR2 or its conventional counterpart CCR5. The model was stimulated with the common agonist CCL3L1 for short (3 min) and long (30 min) durations. As expected, many of the identified proteins are known to participate in conventional signal transduction pathways and in the regulation of cytoskeleton dynamics. However, our analyses revealed unique phosphorylation and network signatures, suggesting roles for ACKR2 other than its scavenger activity. In conclusion, the mapping of phosphorylation events at a holistic level indicated that conventional and atypical chemokine receptors differ in signaling properties. This provides an unprecedented level of detail in chemokine receptor signaling and identifying potential targets for the regulation of ACKR2 and CCR5 function.

6.
Front Immunol ; 13: 1050067, 2022.
Article in English | MEDLINE | ID: mdl-36439180

ABSTRACT

In this article, we review the role of mathematical modelling to elucidate the impact of tumor-associated macrophages (TAMs) in tumor progression and therapy design. We first outline the biology of TAMs, and its current application in tumor therapies, and their experimental methods that provide insights into tumor cell-macrophage interactions. We then focus on the mechanistic mathematical models describing the role of macrophages as drug carriers, the impact of macrophage polarized activation on tumor growth, and the role of tumor microenvironment (TME) parameters on the tumor-macrophage interactions. This review aims to identify the synergies between biological and mathematical approaches that allow us to translate knowledge on fundamental TAMs biology in addressing current clinical challenges.


Subject(s)
Macrophages , Tumor-Associated Macrophages , Tumor Microenvironment , Models, Theoretical , Biology
7.
Front Immunol ; 13: 967737, 2022.
Article in English | MEDLINE | ID: mdl-36263038

ABSTRACT

Monocytes are critical cells of the immune system but their role as effectors is relatively poorly understood, as they have long been considered only as precursors of tissue macrophages or dendritic cells. Moreover, it is known that this cell type is heterogeneous, but our understanding of this aspect is limited to the broad classification in classical/intermediate/non-classical monocytes, commonly based on their expression of only two markers, i.e. CD14 and CD16. We deeply dissected the heterogeneity of human circulating monocytes in healthy donors by transcriptomic analysis at single-cell level and identified 9 distinct monocyte populations characterized each by a profile suggestive of specialized functions. The classical monocyte subset in fact included five distinct populations, each enriched for transcriptomic gene sets related to either inflammatory, neutrophil-like, interferon-related, and platelet-related pathways. Non-classical monocytes included two distinct populations, one of which marked specifically by elevated expression levels of complement components. Intermediate monocytes were not further divided in our analysis and were characterized by high levels of human leukocyte antigen (HLA) genes. Finally, we identified one cluster included in both classical and non-classical monocytes, characterized by a strong cytotoxic signature. These findings provided the rationale to exploit the relevance of newly identified monocyte populations in disease evolution. A machine learning approach was developed and applied to two single-cell transcriptome public datasets, from gastrointestinal cancer and Coronavirus disease 2019 (COVID-19) patients. The dissection of these datasets through our classification revealed that patients with advanced cancers showed a selective increase in monocytes enriched in platelet-related pathways. Of note, the signature associated with this population correlated with worse prognosis in gastric cancer patients. Conversely, after immunotherapy, the most activated population was composed of interferon-related monocytes, consistent with an upregulation in interferon-related genes in responder patients compared to non-responders. In COVID-19 patients we confirmed a global activated phenotype of the entire monocyte compartment, but our classification revealed that only cytotoxic monocytes are expanded during the disease progression. Collectively, this study unravels an unexpected complexity among human circulating monocytes and highlights the existence of specialized populations differently engaged depending on the pathological context.


Subject(s)
COVID-19 , Gastrointestinal Neoplasms , Humans , Monocytes , Immunologic Factors/metabolism , Interferons/metabolism , HLA Antigens/metabolism
8.
Nat Commun ; 13(1): 6499, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36310236

ABSTRACT

Fibrosis is a progressive biological condition, leading to organ dysfunction in various clinical settings. Although fibroblasts and macrophages are known as key cellular players for fibrosis development, a comprehensive functional model that considers their interaction in the metabolic/immunologic context of fibrotic tissue has not been set up. Here we show, by transcriptome-based mathematical modeling in an in vitro system that represents macrophage-fibroblast interplay and reflects the functional effects of inflammation, hypoxia and the adaptive immune context, that irreversible fibrosis development is associated with specific combinations of metabolic and inflammatory cues. The in vitro signatures are in good alignment with transcriptomic profiles generated on laser captured glomeruli and cortical tubule-interstitial area, isolated from human transplanted kidneys with advanced stages of glomerulosclerosis and interstitial fibrosis/tubular atrophy, two clinically relevant conditions associated with organ failure in renal allografts. The model we describe here is validated on tissue based quantitative immune-phenotyping of biopsies from transplanted kidneys, demonstrating its feasibility. We conclude that the combination of in vitro and in silico modeling represents a powerful systems medicine approach to dissect fibrosis pathogenesis, applicable to specific pathological conditions, and develop coordinated targeted approaches.


Subject(s)
Kidney Diseases , Kidney , Humans , Fibrosis , Kidney/metabolism , Macrophages/metabolism , Kidney Diseases/pathology , Fibroblasts/pathology
9.
Front Pharmacol ; 13: 879020, 2022.
Article in English | MEDLINE | ID: mdl-35431927

ABSTRACT

Beyond the wide use of tamoxifen in breast cancer chemotherapy due to its estrogen receptor antagonist activity, this drug is being assayed in repurposing strategies against a number of microbial infections. We conducted a literature search on the evidence related with tamoxifen activity in macrophages, since these immune cells participate as a first line-defense against pathogen invasion. Consistent data indicate the existence of estrogen receptor-independent targets of tamoxifen in macrophages that include lipid mediators and signaling pathways, such as NRF2 and caspase-1, which allow these cells to undergo phenotypic adaptation and potentiate the inflammatory response, without the induction of cell death. Thus, these lines of evidence suggest that the widespread antimicrobial activity of this drug can be ascribed, at least in part, to the potentiation of the host innate immunity. This widens our understanding of the pharmacological activity of tamoxifen with relevant therapeutic implications for infections and other clinical indications that may benefit from the immunomodulatory effects of this drug.

10.
J Leukoc Biol ; 111(4): 817-836, 2022 04.
Article in English | MEDLINE | ID: mdl-34346525

ABSTRACT

The MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIß), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible. MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A7, and MS4A14 were expressed by myeloid cells. MS4A6A and MS4A14 were expressed in circulating monocytes and decreased during monocyte-to-Mϕ differentiation in parallel with an increase in MS4A4A expression. Analysis of gene expression regulation revealed a strong induction of MS4A4A, MS4A6A, MS4A7, and MS4A4E by glucocorticoid hormones. Consistently with in vitro findings, MS4A4A and MS4A7 were expressed in tissue Mϕs from COVID-19 and rheumatoid arthritis patients. Interestingly, MS4A3, selectively expressed in myeloid precursors, was found to be a marker of immature circulating neutrophils, a cellular population associated to COVID-19 severe disease. The results reported here show that members of the MS4A family are differentially expressed and regulated during myelomonocytic differentiation, and call for assessment of their functional role and value as therapeutic targets.


Subject(s)
COVID-19 , Membrane Proteins , Antigens, CD20 , Family , Humans , Membrane Proteins/genetics , Monocytes/metabolism
11.
Front Immunol ; 13: 1074762, 2022.
Article in English | MEDLINE | ID: mdl-36703985

ABSTRACT

Introduction: Adult-type diffuse gliomas are malignant primary brain tumors characterized by very poor prognosis. Dendritic cells (DCs) are key in priming antitumor effector functions in cancer, but their role in gliomas remains poorly understood. Methods: In this study, we characterized tumor-infiltrating DCs (TIDCs) in adult patients with newly diagnosed diffuse gliomas by using multi-parametric flow cytometry and single-cell RNA sequencing. Results: We demonstrated that different subsets of DCs are present in the glioma microenvironment, whereas they are absent in cancer-free brain parenchyma. The largest cluster of TIDCs was characterized by a transcriptomic profile suggestive of severe functional impairment. Patients undergoing perioperative corticosteroid treatment showed a significant reduction of conventional DC1s, the DC subset with key functions in antitumor immunity. They also showed phenotypic and transcriptional evidence of a more severe functional impairment of TIDCs. Discussion: Overall, the results of this study indicate that functionally impaired DCs are recruited in the glioma microenvironment. They are severely affected by dexamethasone administration, suggesting that the detrimental effects of corticosteroids on DCs may represent one of the mechanisms contributing to the already reported negative prognostic impact of steroids on glioma patient survival.


Subject(s)
Brain Neoplasms , Glioma , Humans , Adult , Prognosis , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Adrenal Cortex Hormones/therapeutic use , Dendritic Cells , Tumor Microenvironment
12.
Neurooncol Adv ; 3(1): vdab160, 2021.
Article in English | MEDLINE | ID: mdl-34901858

ABSTRACT

BACKGROUND: Immunotherapeutic early-phase clinical trials (ieCTs) increasingly adopt large expansion cohorts exploring novel agents across different tumor types. High-grade glioma (HGG) patients are usually excluded from these trials. METHODS: Data of patients with recurrent HGGs treated within multicohort ieCTs between February 2014 and August 2019 (experimental group, EG) at our Phase I Unit were retrospectively reviewed and compared to a matched control group (CG) of patients treated with standard therapies. We retrospectively evaluated clinical, laboratory, and molecular parameters through univariate and multivariate analysis. A prospective characterization of circulating leukocyte subpopulations was performed in the latest twenty patients enrolled in the EG, with a statistical significance cutoff of P < .1. RESULTS: Thirty HGG patients were treated into six ieCTs. Fifteen patients received monotherapies (anti-PD-1, anti-CSF-1R, anti-TGFß, anti-cereblon), fifteen patients combination regimens (anti-PD-L1 + anti-CD38, anti-PD-1 + anti-CSF-1R). In the EG, median progression-free survival and overall survival (OS) from treatment initiation were 1.8 and 8.6 months; twelve patients survived more than 12 months, and two of them more than 6 years. Univariate analysis identified O 6-methylguanine DNA methyltransferase (MGMT) promoter methylation and total protein value at six weeks as significantly correlated with a better outcome. Decreased circulating neutrophils and increased conventional dendritic cells levels lead to significantly better OS. CONCLUSIONS: A subgroup of EG patients achieved remarkably durable disease control. MGMT promoter methylation identifies patients who benefit more from immunotherapy. Monitoring dynamic changes of innate immune cell populations may help to predict clinical outcomes.

13.
Biomedicines ; 9(10)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34680504

ABSTRACT

Macrophages play a central role within the tumor microenvironment, with relevant implications for tumor progression. The modulation of their phenotype is one of the mechanisms used by tumors to escape from effective immune responses. This study was designed to analyze the influence of soluble products released by tumors, here represented by the tumor-conditioned media of two tumor cell lines (3LL from Lewis lung carcinoma and MN/MCA from fibrosarcoma), on murine macrophage differentiation and polarization in vitro. Data revealed that tumor-conditioned media stimulated macrophage differentiation but influenced the expression levels of macrophage polarization markers, cytokine production, and microRNAs of relevance for macrophage biology. Interestingly, tumor-derived soluble products supported the survival and proliferation rate of bone marrow precursor cells, an effect observed even with mature macrophages in the presence of M2 but not M1 inducers. Despite presenting low concentrations of macrophage colony-stimulating factor (M-CSF), tumor-conditioned media alone also supported the proliferation of cells to a similar extent as exogenous M-CSF. This effect was only evident in cells positive for the expression of the M-CSF receptor (CD115) and occurred preferentially within the CD16+ subset. Blocking CD115 partially reversed the effect on proliferation. These results suggest that tumors release soluble products that not only promote macrophage development from bone marrow precursors but also stimulate the proliferation of cells with specific phenotypes that could support protumoral functions.

14.
Biomed Pharmacother ; 144: 112274, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34653752

ABSTRACT

Sex differences in immune-mediated diseases are linked to the activity of estrogens on innate immunity cells, including macrophages. Tamoxifen (TAM) is a selective estrogen receptor modulator (SERM) used in estrogen receptor-alpha (ERα)-dependent breast cancers and off-target indications such as infections, although the immune activity of TAM and its active metabolite, 4-OH tamoxifen (4HT), is poorly characterized. Here, we aimed at investigating the endocrine and immune activity of these SERMs in macrophages. Using primary cultures of female mouse macrophages, we analyzed the expression of immune mediators and activation of effector functions in competition experiments with SERMs and 17ß-estradiol (E2) or the bacterial endotoxin LPS. We observed that 4HT and TAM induce estrogen antagonist effects when used at nanomolar concentrations, while pharmacological concentrations that are reached by TAM in clinical settings regulate the expression of VEGFα and other immune activation genes by ERα- and G protein-coupled receptor 1 (GPER1)-independent mechanisms that involve NRF2 through PI3K/Akt-dependent mechanisms. Importantly, we observed that SERMs potentiate cell phagocytosis and modify the effects of LPS on the expression of inflammatory cytokines, such as TNFα and IL1ß, with an overall increase in cell inflammatory phenotype, further sustained by potentiation of IL1ß secretion through caspase-1 activation. Altogether, our data unravel a novel molecular mechanism and immune functions for TAM and 4HT, sustaining their repurposing in infective and other estrogen receptors-unrelated pathologies.


Subject(s)
Estrogen Receptor alpha/metabolism , Immunomodulating Agents/pharmacology , Macrophages, Peritoneal/drug effects , NF-E2-Related Factor 2/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/analogs & derivatives , Animals , Cells, Cultured , Estrogen Receptor alpha/genetics , Female , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis/drug effects , Phenotype , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Tamoxifen/pharmacology
15.
Brain Commun ; 3(3): fcab141, 2021.
Article in English | MEDLINE | ID: mdl-34409288

ABSTRACT

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease causing upper and lower motor neuron loss and currently no effective disease-modifying treatment is available. A pathological feature of this disease is neuroinflammation, a mechanism which involves both CNS-resident and peripheral immune system cells. Regulatory T-cells are immune-suppressive agents known to be dramatically and progressively decreased in patients with amyotrophic lateral sclerosis. Low-dose interleukin-2 promotes regulatory T-cell expansion and was proposed as an immune-modulatory strategy for this disease. A randomized placebo-controlled pilot phase-II clinical trial called Immuno-Modulation in Amyotrophic Lateral Sclerosis was carried out to test safety and activity of low-dose interleukin-2 in 36 amyotrophic lateral sclerosis patients (NCT02059759). Participants were randomized to 1MIU, 2MIU-low-dose interleukin-2 or placebo and underwent one injection daily for 5 days every 28 days for three cycles. In this report, we describe the results of microarray gene expression profiling of trial participants' leukocyte population. We identified a dose-dependent increase in regulatory T-cell markers at the end of the treatment period. Longitudinal analysis revealed an alteration and inhibition of inflammatory pathways occurring promptly at the end of the first treatment cycle. These responses are less pronounced following the end of the third treatment cycle, although an activation of immune-regulatory pathways, involving regulatory T-cells and T helper 2 cells, was evident only after the last cycle. This indicates a cumulative effect of repeated low-dose interleukin-2 administration on regulatory T-cells. Our analysis suggested the existence of inter-individual variation amongst trial participants and we therefore classified patients into low, moderate and high-regulatory T-cell-responders. NanoString profiling revealed substantial baseline differences between participant immunological transcript expression profiles with the least responsive patients showing a more inflammatory-prone phenotype at the beginning of the trial. Finally, we identified two genes in which pre-treatment expression levels correlated with the magnitude of drug responsiveness. Therefore, we proposed a two-biomarker based regression model able to predict patient regulatory T-cell-response to low-dose interleukin-2. These findings and the application of this methodology could be particularly relevant for future precision medicine approaches to treat amyotrophic lateral sclerosis.

16.
Trends Immunol ; 42(9): 764-781, 2021 09.
Article in English | MEDLINE | ID: mdl-34384709

ABSTRACT

The membrane-spanning 4A (MS4A) family includes 18 members with a tetraspan structure in humans. They are differentially and selectively expressed in immunocompetent cells, such as B cells (CD20/MS4A1) and macrophages (MS4A4A), and associate with, and modulate the signaling activity of, different classes of immunoreceptor, including pattern recognition receptors (PRRs) and Ig receptors. Evidence from preclinical models and genetic evidence from humans suggest that members of the MS4A family have key roles in different pathological settings, including cancer, infectious diseases, and neurodegeneration. Therefore, MS4A family members might serve as candidate biomarkers and therapeutic targets for various conditions.


Subject(s)
Disease , Homeostasis , Immunity , Tetraspanins/physiology , Antigens, CD20 , B-Lymphocytes , Humans , Macrophages , Membrane Proteins
17.
Cancers (Basel) ; 13(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802446

ABSTRACT

Prognostic studies are increasingly providing new tools to stratify colo-rectal liver metastasis patients into clinical subgroups, with remarkable implications in terms of clinical management and therapeutic choice. Here, the strengths and hurdles of current prognostic tools in colo-rectal liver metastasis are discussed. Alongside more classic histopathological parameters, which capture features related to the tumor component, such as tumor invasion, tumor growth pattern and regression score, we will discuss immune mediators, which are starting to be considered important features. Their objective quantification has shown significant results in prognostication studies, with most of the work focused on adaptive immune cells, namely T cells. As for macrophages, they are only starting to be appreciated and we will present recent advances in evaluation of macrophage morphological features. Deeper knowledge acquired by multiparametric analyses is rapidly uncovering the variety of immune players that should be assessed. The future projection is to implement deep-learning histopathological tools and to integrate histopathological and immune metrics in multiparametric scores, with the ultimate objective to achieve a deeper resolution of the tumor features and their relevance for colo-rectal liver metastasis.

18.
Sci Signal ; 14(673)2021 03 09.
Article in English | MEDLINE | ID: mdl-33688078

ABSTRACT

The inflammatory human chemokine CXCL5 interacts with the G protein-coupled receptor CXCR2 to induce chemotaxis and activation of neutrophils. CXCL5 also has weak agonist activity toward CXCR1. The N-terminus of CXCL5 can be modified by proteolytic cleavage or deimination of Arg9 to citrulline (Cit), and these modifications can occur separately or together. Here, we chemically synthesized native CXCL5(1-78), truncated CXCL5 [CXCL5(9-78)], and the citrullinated (Cit9) versions and characterized their functions in vitro and in vivo. Compared with full-length CXCL5, N-terminal truncation resulted in enhanced potency to induce G protein signaling and ß-arrestin recruitment through CXCR2, increased CXCL5-initiated internalization of CXCR2, and greater Ca2+ signaling downstream of not only CXCR2 but also CXCR1. Citrullination did not affect the capacity of CXCL5 to activate classical or alternative signaling pathways. Administering the various CXCL5 forms to mice revealed that in addition to neutrophils, CXCL5 exerted chemotactic activity toward monocytes and that this activity was increased by N-terminal truncation. These findings were confirmed by in vitro chemotaxis and Ca2+ signaling assays with primary human CD14+ monocytes and human THP-1 monocytes. In vitro and in vivo analyses suggested that CXCL5 targeted monocytes through CXCR1 and CXCR2. Thus, truncation of the N-terminus makes CXCL5 a more potent chemoattractant for both neutrophils and monocytes that acts through CXCR1 and CXCR2.


Subject(s)
Chemokine CXCL5 , Monocytes , Neutrophils , Animals , Chemokine CXCL5/genetics , Chemotactic Factors , Humans , Interleukin-8 , Mice , Receptors, Interleukin-8A/genetics , THP-1 Cells
19.
Front Immunol ; 11: 550824, 2020.
Article in English | MEDLINE | ID: mdl-33072091

ABSTRACT

The chemokine receptor CXCR4 plays a fundamental role in homeostasis and pathology by orchestrating recruitment and positioning of immune cells, under the guidance of a CXCL12 gradient. The ability of chemokines to form heterocomplexes, enhancing their function, represents an additional level of regulation on their cognate receptors. In particular, the multi-faceted activity of the heterocomplex formed between CXCL12 and the alarmin HMGB1 is emerging as an unexpected player able to modulate a variety of cell responses, spanning from tissue regeneration to chronic inflammation. Nowadays, little is known on the selective signaling pathways activated when CXCR4 is triggered by the CXCL12/HMGB1 heterocomplex. In the present work, we demonstrate that this heterocomplex acts as a CXCR4 balanced agonist, activating both G protein and ß-arrestins-mediated signaling pathways to sustain chemotaxis. We generated ß-arrestins knock out HeLa cells by CRISPR/Cas9 technology and show that the CXCL12/HMGB1 heterocomplex-mediated actin polymerization is primarily ß-arrestin1 dependent, while chemotaxis requires both ß-arrestin1 and ß-arrestin2. Triggering of CXCR4 with the CXCL12/HMGB1 heterocomplex leads to an unexpected receptor retention on the cell surface, which depends on ß-arrestin2. In conclusion, the CXCL12/HMGB1 heterocomplex engages the ß-arrestin proteins differently from CXCL12, promoting a prompt availability of CXCR4 on the cell surface, and enhancing directional cell migration. These data unveil the signaling induced by the CXCL12/HMGB1 heterocomplex in view of identifying biased CXCR4 antagonists or agonists targeting the variety of functions it exerts.


Subject(s)
Chemokine CXCL12/metabolism , HMGB1 Protein/metabolism , Receptors, CXCR4/metabolism , beta-Arrestin 1/metabolism , beta-Arrestin 2/metabolism , Actins/chemistry , Actins/metabolism , CRISPR-Cas Systems , Chemotaxis , Gene Editing , Gene Knockdown Techniques , HeLa Cells , Humans , Multiprotein Complexes/metabolism , Protein Binding , Protein Multimerization , Protein Transport , beta-Arrestin 1/genetics , beta-Arrestin 2/genetics
20.
Vaccines (Basel) ; 8(3)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957704

ABSTRACT

The atypical chemokine receptor ACKR2, formerly named D6, is a scavenger chemokine receptor with a non-redundant role in the control of inflammation and immunity. The scavenging activity of ACKR2 depends on its trafficking properties, which require actin cytoskeleton rearrangements downstream of a ß-arrestin1-Rac1-PAK1-LIMK1-cofilin-dependent signaling pathway. We here demonstrate that in basal conditions, ACKR2 trafficking properties require intact actin and microtubules networks. The dynamic turnover of actin filaments is required to sustain ACKR2 constitutive endocytosis, while both actin and microtubule networks are involved in processes regulating ACKR2 constitutive sorting to rapid, Rab4-dependent and slow, Rab11-dependent recycling pathways, respectively. After chemokine engagement, ACKR2 requires myosin Vb activity to promote its trafficking from Rab11-positive recycling endosomes to the plasma membrane, which sustains its scavenging activity. Other than cofilin phosphorylation, induction of the ß-arrestin1-dependent signaling pathway by ACKR2 agonists also leads to the rearrangement of microtubules, which is required to support the myosin Vb-dependent ACKR2 upregulation and its scavenging properties. Disruption of the actin-based cytoskeleton by the apoptosis-inducing agent staurosporine results in impaired ACKR2 internalization and chemokine degradation that is consistent with the emerging scavenging-independent activity of the receptor in apoptotic neutrophils instrumental for promoting efficient efferocytosis during the resolution of inflammation. In conclusion, we provide evidence that ACKR2 activates a ß-arrestin1-dependent signaling pathway, triggering both the actin and the microtubule cytoskeletal networks, which control its trafficking and scavenger properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...