Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 7(5): 2741-2751, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38630629

ABSTRACT

Herb-based extracellular vesicles (EV), inherently replete with bioactive proteins, RNA, lipids, and other medicinal compounds, are noncytotoxic and uniquely capable of cellular delivery to meet the ever-stringent challenges of ongoing clinical applications. EVs are abundant in nature, affordable, and scalable, but they are also incredibly fragile and stuffed with many biomolecules. To address the low drug binding abilities and poor stability of EVs, we demonstrated herb-based EVs (isolated from neem, mint, and curry leaves) conjugated with chitosan (CS) and PEGylated graphene oxide (GP) that led to their transformation into robust and efficient vectors. The designed conjugates successfully delivered estrogen receptor α (ERα1)-targeting siRNA to breast cancer MCF7 cells. Our data revealed that neem-based EV-CS-GP conjugates were most efficient in cellular siRNA delivery, which could be attributed to hyaluronic acid-mediated recognition of neem EVs by MCF7 cells via CD44 receptors. Our approach shows a futuristic direction in designing clinically viable, sustainable, nontoxic EV-based vehicles that can deliver a variety of functional siRNA cargos.


Subject(s)
Breast Neoplasms , Chitosan , Estrogen Receptor alpha , Extracellular Vesicles , Graphite , Polyethylene Glycols , RNA, Small Interfering , Humans , Chitosan/chemistry , Graphite/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , MCF-7 Cells , Polyethylene Glycols/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Particle Size , Female , Cell Survival/drug effects
2.
Front Chem ; 11: 1306182, 2023.
Article in English | MEDLINE | ID: mdl-38090349

ABSTRACT

Mechanochemistry and oleochemistry and their combination have been known for centuries. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve alternative technologies for the valorization of biomass feedstocks. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of mechanochemistry and oleochemicals such as triglycerides, fatty acids, and glycerol derivatives. The review discusses advances obtained in the production of small chemicals derived from oils with a brief overview of vegetable oils, mechanochemistry and the use of mechanochemistry for the synthesis of biodiesel, lipidyl-cyclodextrine, dimeric and labelled fatty acids, calcium diglyceroxide, acylglycerols, benzoxazine and solketal. The paper also briefly overviews advances and limits for an industrial application.

3.
Chemosphere ; 328: 138587, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37019400

ABSTRACT

Synthesis and fabrication of naturally sourced biopolymers, especially chitosan, grafted with renewable small molecules have recently attracted attention as efficient antimicrobial agents and are highly desired for sustainable material development. Advantageous inherent functionalities in biobased benzoxazine extend the possibility of crosslinking with chitosan which holds immense potential. Herein, a low-temperature, greener facile methodology is adopted for the covalent confinement of benzoxazine monomers bearing aldehyde and disulfide linkages within chitosan to form benzoxazine-grafted-chitosan copolymer films. The association of benzoxazine as Schiff base, hydrogen bonding, and ring-opened structures enabled the exfoliation of chitosan galleries, and such host-guest mediated interactions demonstrated outstanding properties like hydrophobicity, good thermal, and solution stability due to the synergistic effects. Furthermore, the structures empowered excellent bactericidal properties against both E. coli and S. aureus as investigated by GSH loss, live/dead fluorescence microscopy, and morphological alteration on the cell surface by SEM. The work provides the benefits of disulfide-linked benzoxazines on chitosan, offering a promising avenue for general and eco-friendly usage in wound-healing and packaging material.


Subject(s)
Anti-Infective Agents , Chitosan , Benzoxazines/pharmacology , Chitosan/pharmacology , Chitosan/chemistry , Staphylococcus aureus , Escherichia coli , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biopolymers/pharmacology , Biopolymers/chemistry
4.
RSC Adv ; 12(55): 35977-35988, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36545105

ABSTRACT

Fullerene adducts have attracted attention in a variety of applications including organic optoelectronic devices. In this regard, we have designed a covalently linked donor-acceptor dyad comprising a fluorobenzothiadiazole-thiophene (BTF2-Th) unit with the electron acceptor fullerene in an Acceptor-Donor-Acceptor (A-D-A) molecular arrangement. We synthesized and characterized two new covalently bonded benzothiadiazole-based fullerene molecules, mono-adduct, 7 (benzothiadiazole : PC61BM = 1 : 1, anchored terminally via esterification reaction) and multi-adduct, 10-I (benzothiadiazole : PC61BM = n : 1, where n ≥ 1, attached directly to the fullerene core via the Prato reaction) using different synthetic strategies. A broadening of the UV-visible spectra of the modified fullerene derivative with strong absorption from 350 to 500 nm and at low wavelengths is observed as compared to PC61BM. A suitable bandgap, good electronic conductivity, and appreciable solubility in solvents suggest their utility in optoelectronic devices. The mono-adduct 7 showed two-order higher electron mobility as compared to bis-adduct 10-I due to retention of extended conjugation in fullerene, as in the case of PC61BM. Experimentally determined optical properties and energy levels of the fullerene adducts were found to be in good agreement and supported by theoretical calculations. The presence of BTF2 affects the ground state dipole moments as well as the absorption strengths, most noticeable in the case of two attached BTF2 moieties. The HOMO and LUMO levels are found to be localized on the fullerene cage with the extension of the HOMO to the BTF2 unit more and the same is noticed in ground state dipole moment in the side-chain functionalized structure. Such structural arrangement provides easy charge transfer between acceptor and donor units to allow a concomitant effect of favorable optoelectronic properties, energy levels of the frontier orbitals, effective exciton dissociation, and charge transport which may reduce processing complexity to advance single material-based future optoelectronic devices.

5.
Front Oncol ; 12: 953098, 2022.
Article in English | MEDLINE | ID: mdl-36052261

ABSTRACT

Glioblastoma multiforme (GBM) is known as the primary malignant and most devastating form of tumor found in the central nervous system of the adult population. The active pharmaceutical component in current chemotherapy regimens is mostly hydrophobic and poorly water-soluble, which hampers clinical implications. Nanodrug formulations using nanocarriers loaded with such drugs assisted in water dispersibility, improved cellular permeability, and drug efficacy at a low dose, thus adding to the overall practical value. Here, we successfully developed a water-dispersible and biocompatible nanocargo (GO-PEG) based on covalently modified graphene oxide (GO) with a 6-armed poly(ethylene glycol) amine dendrimer for effective loading of the two hydrophobic anticancer drug molecules, CPI444 and vatalanib. These drug molecules target adenosine receptor (A2AR), vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and type III stem cell receptor tyrosine kinase (c-KIT), which plays a crucial role in cancers. The effective cellular delivery of the drugs when loaded on GO-PEG is attributed to the increased permeability of the drug-nanoconjugate formulation. We observed that this combinatorial drug treatment with nanocargo resulted in a significant reduction in the overall cell survival as supported by reduced calcium levels and stem cell markers such as Oct4 and Nanog, which are two of the prime factors for GBM stem cell proliferation. Furthermore, reduced expression of CD24 upon treatment with nanoformulation impeded cellular migration. Cellular assays confirmed inhibition of cell proliferation, migration, and angiogenic potential of GBM treated with GO-PEG-Drug conjugates. Ultimately, GBM U87 cells assumed programmed cell death at a very low concentration due to nanocarrier-mediated drug delivery along with the chosen combination of drugs. Together, this study demonstrated the advantage of GO-PEG mediated combined delivery of CPI444 and vatalanib drugs with increased permeability, a three-pronged combinatorial strategy toward effective GBM treatment.

6.
ACS Appl Bio Mater ; 5(7): 3438-3451, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35754387

ABSTRACT

Nanodiamonds (NDs) are increasingly being assessed as potential candidates for drug delivery in cancer cells and they hold great promise in overcoming the side effects of traditional chemotherapeutics. In the current work, carboxylic acid functionalized nanodiamonds (ND-COOH) were covalently modified with poly(amidoamine) dendrimer (PAMAM) to form amine-terminated nanodiamonds (NP). Unlike ND-COOH, the chemically modified nanodiamond platform NP revealed a pH-independent aqueous dispersion stability, enhancing its potential as an effective carrier. Physical encapsulation of poorly water soluble cabazitaxel (CTX) drug on NP formed ND-PAMAM-CTX (NPC) nanoconjugates and substantially reduced the size of CTX from micrometer to nanometer. CTX was localized within the pores of nanoparticle aggregates and the cavities of the PAMAM dendrimer, thus facilitating the loaded drug's controlled and sustained release. NPC's cumulative CTX release efficiency was determined to be ∼95% at pH 4 after 96 h. A high cellular uptake of NPC both within the cytoplasm and nucleus of U87 cells is confirmed, accounting for a reduced IC50 value (1 nM). Both the cell cycle and Western blot analyses confirmed enhanced cell death and suppressed tubulin protein expression in NPC-treated cells. A significantly high inhibition to cell division with early apoptosis and reduced metastasis demonstrates the effective loading of CTX dosages on the nanocarrier. The present work highlights the potential of a newly designed nanocarrier NP as an efficient nanocargo for cellular delivery applications and may provide future insights to treat one of the most aggressive tumors in neuro-oncological research, glioblastoma multiforme (GBM).


Subject(s)
Dendrimers , Nanodiamonds , Neoplasms , Drug Carriers , Drug Delivery Systems , Nanoconjugates
7.
Chem Commun (Camb) ; 58(22): 3609-3612, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35170626

ABSTRACT

The latest fourth-generation oxazine-ring substituted thiophene-based benzoxazine monomers and polymers with variation in the degree of phenyl substitution (with and without) in the oxazine-ring were synthesized and characterized. Thiophene-based di-substituted benzoxazine undergoes ring-opening polymerization at a low temperature with a minimal mass loss during polymerization as supported by molecular geometry-guided intramolecular interactions. This class of monomers provides ample opportunities to design at the molecular level high-performance polybenzoxazines with promising smart applications.


Subject(s)
Benzoxazines , Polymers , Polymerization , Thiophenes
8.
Nanomaterials (Basel) ; 12(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35055210

ABSTRACT

Resistance to antimicrobial agents in Gram-positive bacteria has become a major concern in the last decade. Recently, nanoparticles (NP) have emerged as a potential solution to antibiotic resistance. We synthesized three reduced graphene oxide (rGO) nanoparticles, namely rGO, rGO-S, and rGO-S/Se, and characterized them using X-ray diffraction (PXRD), Raman analysis, and thermogravimetric analysis. Transmission electron microscopy confirmed spherical shape nanometer size S and S/Se NPs on the rGO surface. Antibacterial properties of all three nanomaterials were probed against Gram-positive pathogens Staphylococcus aureus and Enterococcus faecalis, using turbidometeric and CFU assays. Among the synthesized nanomaterials, rGO-S/Se exhibited relatively strong antibacterial activity against both Gram-positive microorganism tested in a concentration dependent manner (growth inhibition >90% at 200 µg/mL). Atomic force microscopy of rGO-S/Se treated cells displayed morphological aberrations. Our studies also revealed that rGO composite NPs are able to deposit on the bacterial cell surface, resulting in membrane perturbation and oxidative stress. Taken together, our results suggest a possible three-pronged approach of bacterial cytotoxicity by these graphene-based materials.

9.
Biomacromolecules ; 22(10): 4408-4421, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34582169

ABSTRACT

Polybenzoxazines obtained especially from green synthons are facing challenges of the requirement of high ring-opening polymerization (ROP) temperature of the monomer, thus affecting their exploration at the industrial front. This demands effective structural changes in the monomer itself, to mediate catalyst-free polymerization at a low energy via one-step synthesis protocol. In this regard, monomers based on disulfide-linked bisbenzoxazine were successfully synthesized using cystamine (biobased) and cardanol (agro-waste)/phenol. Reduction of the disulfide bridge in the monomer using dithiothreitol under mild conditions in situ transformed the oxazine ring in the monomer, via neighboring group participation of the -SH group in a transient intermediate monomer, into a thiazolidine structure, which is otherwise difficult to synthesize. Structural transformation of ring-opening followed by the ring-closing intramolecular reaction led to an interconversion of O-CH2-N containing a six-membered oxazine ring to S-CH2-N containing a five-membered thiazolidine ring and a phenolic-OH. The structure of the monomer with the oxazine ring and its congener with the thiazolidine ring was characterized by spectroscopic methods and X-ray analysis. Kinetics of structural transformation at a molecular level is studied in detail, and it was found that the reaction proceeded via a transient 2-aminoethanethiol-linked benzoxazine intermediate, as supported by nuclear magnetic resonance spectroscopy and density functional theory studies. The thiazolidine-ring-containing monomer promotes ROP at a substantially low temperature than the reported mono-/bisoxazine monomers due to the dual mode of facilitation of the ROP reaction, both by phenolic-OH and by ring strain. Surprisingly, both the monomer structures led to the formation of a similar polymer structure, as supported by thermogravimetric analysis and Fourier transform infrared study. The current work highlights the benefits of inherent functionalities in naturally sourced feedstocks as biosynthons for the new latest generation of benzoxazine monomers.


Subject(s)
Benzoxazines , Disulfides , Polymerization , Polymers , Thiazolidines
10.
Polymers (Basel) ; 13(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924552

ABSTRACT

Due to their outstanding and versatile properties, polybenzoxazines have quickly occupied a great niche of applications. Developing the ability to polymerize benzoxazine resin at lower temperatures than the current capability is essential in taking advantage of these exceptional properties and remains to be most challenging subject in the field. The current review is classified into several parts to achieve this goal. In this review, fundamentals on the synthesis and evolution of structure, which led to classification of PBz in different generations, are discussed. Classifications of PBzs are defined depending on building block as well as how structure is evolved and property obtained. Progress on the utility of biobased feedstocks from various bio-/waste-mass is also discussed and compared, wherever possible. The second part of review discusses the probable polymerization mechanism proposed for the ring-opening reactions. This is complementary to the third section, where the effect of catalysts/initiators has on triggering polymerization at low temperature is discussed extensively. The role of additional functionalities in influencing the temperature of polymerization is also discussed. There has been a shift in paradigm beyond the lowering of ring-opening polymerization (ROP) temperature and other areas of interest, such as adaptation of molecular functionality with simultaneous improvement of properties.

11.
Carbohydr Polym ; 254: 117296, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33357864

ABSTRACT

A fully biobased benzoxazine monomer, V-fa (using vanillin and furfurylamine) was grafted onto chitosan (CS) at different weight ratios (CXVY) using "grafting to" benign Schiff base chemistry. Incorporation of V-fa onto CS increased the tensile strength and improved chemical resistance of the CS-graft-V-fa films. Reversible labile linkages, expansion of CS galleries and leaching out of phenolic species from biobased polymer films led to an improved antibacterial activity against Staphylococcus aureus, which is ∼125 times higher than the bare CS film, V-fa and oligomeric V-fa. The leached out species from films were analyzed extensively by NMR, FTIR, GPC, ABTS and HRMS analysis. Oxidative-stress seems to be responsible for antibacterial activity. Current work illustrates an attractive synthetic approach and the improved antibacterial performance of biobased CS-graft-poly(V-fa) films which may hold as a potential alternative for wound-healing and implant applications in future.


Subject(s)
Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Benzoxazines/chemistry , Chitosan/chemistry , Drug Liberation , Staphylococcus aureus/drug effects , Benzaldehydes/chemistry , Furans/chemistry , Hydrophobic and Hydrophilic Interactions , Microbial Viability/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Solvents/chemistry , Staphylococcus aureus/metabolism , Tensile Strength , Transplantation/methods , Water/chemistry , Wound Healing/drug effects
12.
Front Chem ; 8: 711, 2020.
Article in English | MEDLINE | ID: mdl-33195009

ABSTRACT

Olefin bonds participate in co-reaction with the benzoxazine functionality of the monomer and are one of the strategies used to affect the crosslink density of a polybenzoxazine network. In general, the double bond incorporation in starting material is usually catalyzed by expensive, rare earth metals affecting the sustainability of the reaction. The natural abundance of feedstocks with inherent double bonds may be a powerful platform for the development of novel greener structures, with potential applications in polymers. Here, we report the design, synthesis, and characterization of a biobased non-halogen flame retardant, consisting of naturally occurring phenols, eugenol (E), and cardanol (C). The presence of a covalently linked phosphazene (P) core allowed the synthesis of hexa-functional flame retardant molecules, abbreviated as EP and CP. The chemical structures of the synthesized EP and CP were confirmed by Fourier transform infrared (FTIR), nuclear magnetic resonance (1H, 13C, 31P NMR), and single crystal XRD (only in the case of EP). Their polymerization with cardanol sourced tri-oxazine benzoxazine monomer, C-trisapm, was followed by FTIR, NMR, and DSC studies. The thermal stability and flame retardant properties of the hybrid phosphazene-benzoxazine copolymers was determined by thermogravimetry analysis (TGA), limiting oxygen index (LOI), vertical burning, and smoke density analyses. SEM images of the char residues of the polymers with or without the addition of reactive phosphazene molecules confirmed the intumescent flame retarding mechanism. Current work highlights the utility of sustainable origin non-halogen flame retardant (FR) molecules and their utility in polybenzoxazine chemistry.

13.
ACS Appl Bio Mater ; 3(10): 6722-6736, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-35019337

ABSTRACT

Development of drugs to tackle the ever-increasing cases of cancer and many other diseases including any pandemic is itself challenging. Repurposing existing drugs is an upcoming drug development strategy established for the reuse of existing licensed drugs to ensure accessible, sustainable, and affordable care against cancer. Herein, we presented a nanochemotherapeutic approach based on PEGylated graphene oxide (GO-PEG) loaded with superparamagnetic iron oxide nanoparticles (NPs) and a sustainable natural origin drug, artesunate (ART) to kill cancerous cells. GO-PEG provided a larger surface area to load the dual cargo, iron oxide NPs (∼40%) and ART (∼13%), at a high loading efficiency and simultaneously affected nanotization and crystallinity of the iron oxide NPs. The morphology and internalization of NPs were determined qualitatively and quantitatively by atomic force microscopy (AFM)-Raman imaging and atomic absorption spectroscopy (AAS) analysis, respectively. Furthermore, the loading and unloading of iron reserves were characterized by high-resolution transmission electron microscopy (TEM) images. The loaded iron oxide NPs underwent a pH-triggered release of iron ions, which is higher in acidic pH than in neutral pH. A ∼sevenfold reduction in the IC50 value of ART upon treatment with the designed nanoconjugate is observed. ART is repositioned as a therapeutic drug against cancer cells, and its efficacy is amplified by the Fenton reaction due to iron oxide NPs, as confirmed by a high oxidative stress generated within the cells. The current work suggests that ART and iron oxide NPs loaded on GO-PEG, a biocompatible carrier, are a promising drug-nanoparticle conjugate for cancer treatment.

14.
ACS Omega ; 4(5): 9407-9418, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31460031

ABSTRACT

Graphene oxide (GO) is an attractive precursor for graphene, provided by the well-known wet-chemical oxidative process. The intercalation of acid in graphite is considered as a crucial step, and its subsequent oxidation holds special relevance in synthesis. So far, the above chemistry is dominated by usage of H2SO4. Recently, H3PO4 appeared as a suitable intercalant for graphite. However, its role is not well understood in the formation of GO, especially when present as a co-acid with H2SO4. Additionally, a relatively lower toxicity of H3PO4 as compared to H2SO4, elimination of toxic NaNO3 usage, and a facile purification protocol are encouraging in terms of low-cost production of GO with a reduced environmental impact. Here, we report the systematic synthesis and characterization of GOs prepared with the variation in the ratio of H2SO4 and H3PO4. Ab initio simulations revealed that intercalation is primarily affected because of the usage of a mixture of co-acids. Interestingly, the ratio of the acids dictated the nature of the functionalities, extent of the defects, and morphology of the GOs, accounting for a pronounced effect on thermal stability, contact angle, zeta potential, and hydrodynamic size. The oxidation mechanism showed a predominance of H2SO4 content, whereas H3PO4 is found to mainly govern the intercalation of graphite, thereby affecting the acid-based intercalation-oxidation chemistry of graphite. The as-prepared GO suspension exhibited a high adsorption capacity for methylene blue dye removal in water, suggesting its potential as an adsorbent material in water treatment. The utility of the two acids affects the acid-based intercalation-oxidation chemistry of graphite and simultaneously may open up new opportunities for synthesized GOs, on tenets of green chemistry, in a wide arena of applications.

15.
EBioMedicine ; 45: 261-277, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31255656

ABSTRACT

BACKGROUND: Artesunate the most potent antimalarial is widely used for the treatment of multidrug-resistant malaria. The antimalarial cytotoxicity of artesunate has been mainly attributed to its selective, irreversible and iron- radical-mediated damage of parasite biomolecules. In the present research, iron oxide nanoparticle fortified artesunate was tested in P. falciparum and in an experimental malaria mouse model for enhancement in the selectivity and toxicity of artesunate towards parasite. Artesunate was fortified with nontoxic biocompatible surface modified iron oxide nanoparticle which is specially designed and synthesized for the sustained pH-dependent release of Fe2+ within the parasitic food vacuole for enhanced ROS spurt. METHODS: Antimalarial efficacy of Iron oxide nanoparticle fortified artesunate was evaluated in wild type and artemisinin-resistant Plasmodium falciparum (R539T) grown in O + ve human blood and in Plasmodium berghei ANKA infected swiss albino mice. Internalization of nanoparticles, the pH-dependent release of Fe2+, production of reactive oxygen species and parasite biomolecule damage by iron oxide nanoparticle fortified artesunate was studied using various biochemical, biophysical, ultra-structural and fluorescence microscopy. For determining the efficacy of ATA-IONP+ART on resistant parasite ring survival assay was performed. RESULTS: The nanoparticle fortified artesunate was highly efficient in the 1/8th concentration of artesunate IC50 and led to retarded growth of P. falciparum with significant damage to macromolecules mediated via enhanced ROS production. Similarly, preclinical In vivo studies also signified a radical reduction in parasitemia with ~8-10-fold reduced dosage of artesunate when fortified with iron oxide nanoparticles. Importantly, the ATA-IONP combination was efficacious against artemisinin-resistant parasites. INTERPRETATION: Surface coated iron-oxide nanoparticle fortified artesunate can be developed into a potent therapeutic agent towards multidrug-resistant and artemisinin-resistant malaria in humans. FUND: This study is supported by the Centre for Study of Complex Malaria in India funded by the National Institute of Health, USA.


Subject(s)
Artesunate/pharmacology , Malaria, Falciparum/drug therapy , Metal Nanoparticles/chemistry , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Artesunate/chemistry , Ferric Compounds/chemistry , Humans , Malaria, Falciparum/parasitology , Mice , Plasmodium falciparum/pathogenicity
16.
Mol Cell Biochem ; 454(1-2): 123-138, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30390174

ABSTRACT

Natural products from medicinal plants have always attracted a lot of attention due to their diverse and interesting therapeutic properties. We have employed the principles of green chemistry involving isomerization, coupling and condensation reaction to synthesize a class of compounds derived from eugenol, a naturally occurring bioactive phytophenol. The compounds were characterized structurally by 1H-, 13C-NMR, FT-IR spectroscopy and mass spectrometry analysis. The purity of compounds was detected by HPLC. The synthesized compounds exhibited anti-cancer activity. A 10-12-fold enhancement in efficiency of drug molecules (~ 1 µM) was observed when delivered with graphene oxide (GO) as a nanovehicle. Our data suggest cell death via apoptosis in a dose-dependent manner due to increase in calcium levels in specific cancer cell lines. Interestingly, the benzoxazine derivatives of eugenol with GO nanoparticle exhibited enhanced therapeutic potential in cancer cells. In addition to anti-cancer effect, we also observed significant role of these derivatives on parasite suggesting its multi-pharmacological capability.


Subject(s)
Apoptosis , Benzoxazines/pharmacology , Drug Carriers , Eugenol/pharmacology , Graphite , Nanoparticles/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Cell Line, Tumor , HeLa Cells , Humans , MCF-7 Cells , Neoplasms/physiopathology
17.
Bioorg Med Chem Lett ; 28(9): 1629-1637, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29615339

ABSTRACT

Development of new class of anti-malarial drugs is an essential requirement for the elimination of malaria. Bioactive components present in medicinal plants and their chemically modified derivatives could be a way forward towards the discovery of effective anti-malarial drugs. Herein, we describe a new class of compounds, 1,3-benzoxazine derivatives of pharmacologically active phytophenols eugenol (compound 3) and isoeugenol (compound 4) synthesised on the principles of green chemistry, as anti-malarials. Compound 4, showed highest anti-malarial activity with no cytotoxicity towards mammalian cells. Compound 4 induced alterations in the intracellular Na+ levels and mitochondrial depolarisation in intraerythrocytic Plasmodium falciparum leading to cell death. Knowing P-type cation ATPase PfATP4 is a regulator for sodium homeostasis, binding of compound 3, compound 4 and eugenol to PfATP4 was analysed by molecular docking studies. Compounds showed binding to the catalytic pocket of PfATP4, however compound 4 showed stronger binding due to the presence of propylene functionality, which corroborates its higher anti-malarial activity. Furthermore, anti-malarial half maximal effective concentration of compound 4 was reduced to 490 nM from 17.54 µM with nanomaterial graphene oxide. Altogether, this study presents anti-plasmodial potential of benzoxazine derivatives of phytophenols and establishes disruption of parasite sodium homeostasis as their mechanism of action.


Subject(s)
Antimalarials/pharmacology , Benzoxazines/pharmacology , Homeostasis/drug effects , Phenols/pharmacology , Plasmodium falciparum/drug effects , Sodium/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Dose-Response Relationship, Drug , Membrane Potential, Mitochondrial/drug effects , Molecular Docking Simulation , Molecular Structure , Parasitic Sensitivity Tests , Phenols/chemistry , Plasmodium falciparum/growth & development , Sodium/chemistry , Structure-Activity Relationship
18.
ACS Appl Mater Interfaces ; 10(17): 14577-14593, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29634909

ABSTRACT

Conjugates of poly(amidoamine) (PAMAM) with modified graphene oxide (GO) are attractive nonviral vectors for gene-based cancer therapeutics. GO protects siRNA from enzymatic cleavage and showed reasonable transfection efficiency along with simultaneous benefits of low cost and large scale production. PAMAM is highly effective in siRNA delivery but suffers from high toxicity with poor in vivo efficacy. Co-reaction of GO and PAMAM led to aggregation and more importantly, have detrimental effect on stability of dispersion at physiological pH preventing their exploration at clinical level. In the current work, we have designed, synthesized, characterized and explored a new type of hybrid vector (GPD), using GO synthesized via improved method which was covalently tethered with poly(ethylene glycol) (PEG) and PAMAM. The existence of covalent linkage, relative structural changes and properties of GPD is well supported by Fourier transform infrared (FTIR), UV-visible (UV-vis), Raman, X-ray photoelectron (XPS), elemental analysis, powder X-ray diffraction (XRD), thermogravimetry analysis (TGA), dynamic light scattering (DLS), and zeta potential. Scanning electron microscopy (SEM), and transmission electron microscopy (TEM) of GPD showed longitudinally aligned columnar self-assembled ∼10 nm thick polymeric nanoarchitectures onto the GO surface accounting to an average size reduction to ∼20 nm. GPD revealed an outstanding stability in both phosphate buffer saline (PBS) and serum containing cell medium. The binding efficiency of EPAC1 siRNA to GPD was supported by gel retardation assay, DLS, zeta potential and photoluminescence (PL) studies. A lower cytotoxicity with enhanced cellular uptake and homogeneous intracellular distribution of GPD/siRNA complex is confirmed by imaging studies. GPD exhibited a higher transfection efficiency with remarkable inhibition of cell migration and lower invasion than PAMAM and Lipofectamine 2000 suggesting its role in prevention of breast cancer progression and metastasis. A significant reduction in the expression of the specific protein against which siRNA was delivered is revealed by Western blot assay. Furthermore, a pH-triggered release of siRNA from the GPD/siRNA complex was studied to provide a mechanistic insight toward unloading of siRNA from the vector. Current strategy is a way forward for designing effective therapeutic vectors for gene-based antitumor therapy.


Subject(s)
Nanoconjugates/chemistry , Graphite , Polymers
19.
ACS Omega ; 2(7): 3070-3082, 2017 Jul 31.
Article in English | MEDLINE | ID: mdl-30023683

ABSTRACT

Graphene oxide (GO) is a promising and remarkable nanomaterial that exhibits antimicrobial activity due to its specific surface-interface interactions. In the present work, for the first time, we have reported the antibacterial activity of GO-coated surfaces prepared by two different methods (Hummers' and improved, i.e., GOH and GOI) against bacterial biofilm formation. The bacterial toxicity of the deposited GO-coated surfaces was investigated for both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) models of bacteria. The mechanism of inhibition is different on the coated surface than that in suspension, as determined by measurement of the percentage inhibition of biofilm formation, Ellman's assay, and colony forming unit (CFU) studies. The difference in the nature, degree of oxidative functionalities, and size of the synthesized GO nanoparticles mitigates biofilm formation. To better understand the antimicrobial mechanism of GO when coated on surfaces, we were able to demonstrate that beside reactive oxygen species-mediated oxidative stress, the physical properties of the GO-coated substrate effectively inactivate bacterial cell proliferation, which forms biofilms. Light and atomic force microscopy (AFM) images display a higher inhibition in the proliferation of planktonic cells in Gram-negative bacteria as compared to that in Gram-positive bacteria. The existence of a smooth surface with fewer porous domains in GOI inhibits biofilm formation, as demonstrated by optical microscopy and AFM images. The oxidative stress was found to be lower in the coated surface as compared to that in the suspensions as the latter enables exposure of both a large fraction of the active edges and functionalities of the GO sheets. In suspension, GOH is selective against S. aureus whereas GOI showed inhibition toward E. coli. This study provides new insights to better understand the bactericidal activity of GO-coated surfaces and contributes to the design of graphene-based antimicrobial surface coatings, which will be valuable in biomedical applications.

20.
Sci Rep ; 6: 25207, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27121089

ABSTRACT

A sulfur-rich copolymer, poly(S-r-C-a) has been synthesized via a sustainable route, showing the utility of two major industrial wastes- elemental sulfur (petroleum waste) and cardanol (agro waste), to explore its potential as cathode material for Li-S batteries. The sulfur-rich copolymer exhibited a reduction in the active material dissolution into the electrolyte and a low self-discharge rate behavior during the rest time compared to an elemental sulfur cathode, indicating the chemical confinement of sulfur units. The presence of organosulfur moieties in copolymer suppress the irreversible deposition of end-discharge products on electrode surfaces and thus improve the electrochemical performances of Li-S batteries. This sulfur copolymer offered a reversible capacity of 892 mA h g(-1) at 2nd cycle and maintained the capacity of 528 mA h g(-1) after 50 cycles at 200 mA g(-1). Reduced graphene oxide (rGO) prepared via a sustainable route was used as a conductive filler to extract the better electrochemical performances from this sulfur copolymer. Such sustainable origin batteries prepared via economically viable showed an improved specific capacity of ~975 mA h g(-1) after 100 cycles at 200 mA g(-1) current rate with capacity fading of 0.15% per cycle and maintained a stable performance over 500 cycles at 2000 mA g(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...