Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Fluids Barriers CNS ; 21(1): 33, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589879

ABSTRACT

BACKGROUND: The blood-brain barrier (BBB) is pivotal for the maintenance of brain homeostasis and it strictly regulates the cerebral transport of a wide range of endogenous compounds and drugs. While fasting is increasingly recognized as a potential therapeutic intervention in neurology and psychiatry, its impact upon the BBB has not been studied. This study was designed to assess the global impact of fasting upon the repertoire of BBB transporters. METHODS: We used a combination of in vivo and in vitro experiments to assess the response of the brain endothelium in male rats that were fed ad libitum or fasted for one to three days. Brain endothelial cells were acutely purified and transcriptionaly profiled using RNA-Seq. Isolated brain microvessels were used to assess the protein expression of selected BBB transporters through western blot. The molecular mechanisms involved in the adaptation to fasting were investigated in primary cultured rat brain endothelial cells. MCT1 activity was probed by in situ brain perfusion. RESULTS: Fasting did not change the expression of the main drug efflux ATP-binding cassette transporters or P-glycoprotein activity at the BBB but modulated a restrictive set of solute carrier transporters. These included the ketone bodies transporter MCT1, which is pivotal for the brain adaptation to fasting. Our findings in vivo suggested that PPAR δ, a major lipid sensor, was selectively activated in brain endothelial cells in response to fasting. This was confirmed in vitro where pharmacological agonists and free fatty acids selectively activated PPAR δ, resulting in the upregulation of MCT1 expression. Moreover, dosing rats with a specific PPAR δ antagonist blocked the upregulation of MCT1 expression and activity induced by fasting. CONCLUSIONS: Altogether, our study shows that fasting affects a selected set of BBB transporters which does not include the main drug efflux transporters. Moreover, we describe a previously unknown selective adaptive response of the brain vasculature to fasting which involves PPAR δ and is responsible for the up-regulation of MCT1 expression and activity. Our study opens new perspectives for the metabolic manipulation of the BBB in the healthy or diseased brain.


Subject(s)
Blood-Brain Barrier , PPAR delta , Rats , Male , Animals , Blood-Brain Barrier/metabolism , PPAR delta/metabolism , Endothelial Cells/metabolism , Membrane Transport Proteins/metabolism , Brain/metabolism , Fasting
2.
Neuropharmacology ; 191: 108588, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33940010

ABSTRACT

The inducible p25 overexpression mouse model recapitulate many hallmark features of Alzheimer's disase including progressive neuronal loss, elevated Aß, tau pathology, cognitive dysfunction, and impaired synaptic plasticity. We chose p25 mice to evaluate the physical and functional integrity of the blood-brain barrier (BBB) in a context of Tau pathology (pTau) and severe neurodegeneration, at an early (3 weeks ON) and a late (6 weeks ON) stage of the pathology. Using in situ brain perfusion and confocal imaging, we found that the brain vascular surface area and the physical integrity of the BBB were unaltered in p25 mice. However, there was a significant 14% decrease in cerebrovascular volume in 6 weeks ON mice, possibly explained by a significant 27% increase of collagen IV in the basement membrane of brain capillaries. The function of the BBB transporters GLUT1 and LAT1 was evaluated by measuring brain uptake of d-glucose and phenylalanine, respectively. In 6 weeks ON p25 mice, d-glucose brain uptake was significantly reduced by about 17% compared with WT, without any change in the levels of GLUT1 protein or mRNA in brain capillaries. The brain uptake of phenylalanine was not significantly reduced in p25 mice compared with WT. Lack of BBB integrity, impaired BBB d-glucose transport have been observed in several mouse models of AD. In contrast, reduced cerebrovascular volume and an increased basement membrane thickness may be more specifically associated with pTau in mouse models of neurodegeneration.


Subject(s)
Alzheimer Disease/chemically induced , Blood-Brain Barrier/physiopathology , Cerebrovascular Circulation/physiology , Disease Models, Animal , Animals , Atrophy , Biological Transport , Blood Vessels/pathology , Blood-Brain Barrier/physiology , Brain/metabolism , Brain/pathology , Glucose/metabolism , Green Fluorescent Proteins , Mice , Mice, Transgenic , tau Proteins/metabolism
3.
Eur J Pharm Sci ; 117: 68-79, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29427702

ABSTRACT

Efficacy of drugs aimed at treating central nervous system (CNS) disorders rely partly on their ability to cross the cerebral endothelium, also called the blood-brain barrier (BBB), which constitutes the main interface modulating exchanges of compounds between the brain and blood. In this work, we used both, conventional pharmacokinetics (PK) approach and in situ brain perfusion technique to study the blood and brain PK of PKRinh, an inhibitor of the double-stranded RNA-dependent protein kinase (PKR) activation, in mice. PKRinh showed a supra dose-proportional blood exposure that was not observed in the brain, and a brain to blood AUC ratio of unbound drug smaller than 1 at all tested doses. These data suggested the implication of an active efflux at the BBB. Using in situ brain perfusion technique, we showed that PKRinh has a very high brain uptake clearance which saturates with increasing concentrations. Fitting the data to a Michaelis-Menten equation revealed that PKRinh transport through the BBB is composed of a passive unsaturable flux and an active saturable protein-mediated efflux with a km of ≅ 3 µM. We were able to show that the ATP-binding cassette (ABC) transporter P-gp (Abcb1), but not Bcrp (Abcg2), was involved in the brain to blood efflux of PKRinh. At the circulating PKRinh concentrations of this study, the P-gp was not saturated, in accordance with the linear brain PKRinh PK. Finally, PKRinh had high brain uptake clearance (14 µl/g/s) despite it is a good P-gp substrate (P-gp Efflux ratio ≅ 3.6), and reached similar values than the cerebral blood flow reference, diazepam, in P-gp saturation conditions. With its very unique brain transport properties, PKRinh improves our knowledge about P-gp-mediated efflux across the BBB for the development of new CNS directed drugs.


Subject(s)
Brain/metabolism , Central Nervous System Agents/pharmacokinetics , Protein Kinase Inhibitors/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics , Animals , Biological Transport , Central Nervous System Agents/blood , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Protein Kinase Inhibitors/blood
4.
Sci Rep ; 7(1): 13393, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042617

ABSTRACT

ABCG4 is an ATP-binding cassette transmembrane protein which has been shown, in vitro, to participate in the cellular efflux of desmosterol and amyloid-ß peptide (Aß). ABCG4 is highly expressed in the brain, but its localization and function at the blood-brain barrier (BBB) level remain unknown. We demonstrate by qRT-PCR and confocal imaging that mouse Abcg4 is expressed in the brain capillary endothelial cells. Modelling studies of the Abcg4 dimer suggested that desmosterol showed thermodynamically favorable binding at the putative sterol-binding site, and this was greater than for cholesterol. Additionally, unbiased docking also showed Aß binding at this site. Using a novel Abcg4-deficient mouse model, we show that Abcg4 was able to export Aß and desmosterol at the BBB level and these processes could be inhibited by probucol and L-thyroxine. Our assay also showed that desmosterol antagonized the export of Aß, presumably as both bind at the sterol-binding site on Abcg4. We show for the first time that Abcg4 may function in vivo to export Aß at the BBB, in a process that can be antagonized by its putative natural ligand, desmosterol (and possibly cholesterol).


Subject(s)
ATP Binding Cassette Transporter, Subfamily G/genetics , ATP Binding Cassette Transporter, Subfamily G/metabolism , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Gene Expression , ATP Binding Cassette Transporter, Subfamily G/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amyloid beta-Peptides/chemistry , Animals , Biomarkers , Capillary Permeability , Cell Membrane Permeability , Desmosterol/metabolism , Fluorescent Antibody Technique , Gene Targeting , Genetic Loci , Mice , Mice, Knockout , Models, Molecular , Protein Binding , Protein Conformation , Protein Multimerization , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...