Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
2.
Am J Hematol ; 98(12): 1888-1897, 2023 12.
Article in English | MEDLINE | ID: mdl-37718626

ABSTRACT

CD19 directed CAR T-cell therapy is used to treat relapsed/refractory B-cell acute lymphoblastic leukemia. The role of the pre-CAR bone marrow (BM) stromal microenvironment in determining response to CAR T-cell therapy has been understudied. We performed whole transcriptome analysis, reticulin fibrosis assessment and CD3 T-cell infiltration on BM core biopsies from pre- and post-CAR timepoints for 61 patients, as well as on a cohort of 54 primary B-ALL samples. Pathways of fibrosis, extracellular matrix development, and associated transcription factors AP1 and TGF-ß3, were enriched and upregulated in nonresponders (NR) even prior to CAR T cell therapy. NR showed significantly higher levels of BM fibrosis compared to complete responders by both clinical reticulin assessment and AI-assisted digital image scoring. CD3+ T cells showed a trend toward lower infiltration in NR. NR had significantly higher levels of pre-CAR fibrosis compared to primary B-ALL. High levels of fibrosis were associated with lower overall survival after CAR T-cell therapy. In conclusion, BM fibrosis is a novel mechanism mediating nonresponse to CD19-directed CAR T-cell therapy in B-ALL. A widely used clinically assay for quantitating myelofibrosis can be repurposed to determine patients at high risk of non-response. Genes and pathways associated with BM fibrosis are a potential target to improve response.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Primary Myelofibrosis , Humans , Immunotherapy, Adoptive/methods , Primary Myelofibrosis/genetics , Primary Myelofibrosis/therapy , Reticulin , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Antigens, CD19 , Fibrosis , Tumor Microenvironment
3.
Mod Pathol ; 36(7): 100170, 2023 07.
Article in English | MEDLINE | ID: mdl-36997001

ABSTRACT

High-grade B-cell lymphomas with 11q aberrations (HGBL-11q) represent a World Health Organization-defined group of lymphomas that harbor recurrent chromosome 11q aberrations involving proximal gains and telomeric losses. Although a limited number of HGBL-11q cases evaluated thus far appear to show a similar course and prognosis as Burkitt lymphoma (BL), many molecular differences have been appreciated, most notably the absence of MYC rearrangement. Despite biological differences between BL and HGBL-11q, histomorphologic and immunophenotypic distinction remains challenging. Here, we provide a comparative whole proteomic profile of BL- and HGBL-11q-derived cell lines, identifying numerous shared and differentially expressed proteins. Transcriptome profiling performed on paraffin-embedded tissue samples from primary BL and HGBL-11q lymphomas was additionally performed to provide further molecular characterization. Overlap of proteomic and transcriptomic data sets identified several potential novel biomarkers of HGBL-11q, including diminished lymphoid enhancer-binding factor 1 expression, which was validated by immunohistochemistry staining in a cohort of 23 cases. Altogether, these findings provide a comprehensive multimodal and comparative molecular profiling of BL and HGBL-11q and suggest the use of enhancer-binding factor 1 as an immunohistochemistry target to distinguish between these aggressive lymphomas.


Subject(s)
Burkitt Lymphoma , Lymphoma, B-Cell , Lymphoma, Large B-Cell, Diffuse , Proteogenomics , Humans , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , Lymphoid Enhancer-Binding Factor 1 , Proteomics , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Chromosome Aberrations , Biomarkers , Lymphoma, Large B-Cell, Diffuse/pathology
4.
Int J Lab Hematol ; 44(4): 750-758, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35419923

ABSTRACT

INTRODUCTION: Chimeric antigen receptor (CAR) T cell products are available to treat relapsed/refractory B-lymphoblastic leukaemia/lymphoma (B-ALL), diffuse large B-cell lymphoma, mantle-cell lymphoma, and myeloma. CAR products vary by their target epitope and constituent molecules. Hence, there are no common laboratory assays to assess CAR T cell expansion in the clinical setting. We investigated the utility of common haematology laboratory parameters to measure CAR T cell expansion and response. METHODS: Archived CellaVision images, absolute lymphocyte counts, and Sysmex CPD parameters spanning 1 month after CD19-CAR, UCAR19, CD22-CAR, CD33-CAR, and UCAR123 therapy were compared against donor lymphocyte infused control patients. Additionally, CellaVision images gathered during acute EBV infection were analysed. RESULTS: CellaVision images revealed a distinct sequence of three lymphocyte morphologies, common among CD19-CAR, CD22-CAR and UCAR19. This lymphocyte sequence was notably absent in CAR T cell non-responders and stem-cell transplantation controls, but shared some features seen during acute EBV infection. CD19-CAR engraftment kinetics monitored by quantitative PCR show an expansion and persistence phase and mirror CD19-CAR ALC kinetics. We show other novel CAR T cell therapies (UCAR19, CD22-CAR, CD33-CAR and UCAR123) display similar ALC expansion in responders and diminished ALC expansion in non-responders. Furthermore, the CPD parameter LY_WY fluorescence increased within the first week after CD19-CAR infusion, preceding the peak absolute lymphocyte count (ALC) by 3.7 days. CONCLUSION: Autologous and allogeneic CAR T cell therapy produce unique changes in common haematology laboratory parameters and could be a useful surrogate to follow CAR T-cell expansion after infusion.


Subject(s)
Epstein-Barr Virus Infections , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Lymphoma, Large B-Cell, Diffuse , Adult , Antigens, CD19 , Hematologic Neoplasms/therapy , Humans , Immunotherapy, Adoptive/methods , Interleukin-3 Receptor alpha Subunit , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen , Sialic Acid Binding Ig-like Lectin 2 , Sialic Acid Binding Ig-like Lectin 3
5.
Ecol Evol ; 11(19): 13153-13165, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34646459

ABSTRACT

We studied the impact of flooding and light availability gradients on sexual and asexual reproduction in Lindera melissifolia (Walt.) Blume, an endangered shrub found in floodplain forests of the Mississippi Alluvial Valley (MAV), USA. A water impoundment facility was used to control the duration of soil flooding (0, 45, or 90 days), and shade houses were used to control light availability (high = 72%, intermediate = 33%, or low = 2% of ambient light) received by L. melissifolia established on native soil of the MAV. Sexual reproductive intensity, as measured by inflorescence bud count, fruit set, and drupe production, was greatest in the absence of soil flooding. Ninety days of soil flooding in the year prior to anthesis decreased inflorescence bud counts, and 45 days of soil flooding in the year of anthesis lessened fruit set and drupe production. Inflorescence bud development was the greatest in environments of intermediate light, decreased in high-light environments, and was absent in low light environments. But low fruit set diminished drupe production in intermediate light environments as compared to high light environments. Asexual reproduction, as measured by development of new ramets, was greatest in the absence of soil flooding and where plants were grown in high or intermediate light. Plants exhibited plasticity in reproductive mode such that soil flooding increased the relative importance of asexual reproduction. The high light environment was most favorable to sexual reproduction, and reproductive mode transitioned to exclusively asexual in the low light environment. Our results raise several implications important to active management for the conservation of this imperiled plant.

6.
Cancers (Basel) ; 12(6)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517171

ABSTRACT

Background: Focal amplification of fibroblast growth factor receptor 1 (FGFR1) defines a subgroup of breast cancers with poor prognosis and high risk of recurrence. We sought to demonstrate the potential of circulating cell-free DNA (cfDNA) analysis to evaluate FGFR1 copy numbers from a cohort of 100 metastatic breast cancer (mBC) patients. Methods: Formalin-fixed paraffin-embedded (FFPE) tissue samples were screened for FGFR1 amplification by FISH, and positive cases were confirmed with a microarray platform (OncoscanTM). Subsequently, cfDNA was evaluated by two approaches, i.e., mFAST-SeqS and shallow whole-genome sequencing (sWGS), to estimate the circulating tumor DNA (ctDNA) allele fraction (AF) and to evaluate the FGFR1 status. Results: Tissue-based analyses identified FGFR1 amplifications in 20/100 tumors. All cases with a ctDNA AF above 3% (n = 12) showed concordance for FGFR1 status between tissue and cfDNA. In one case, we were able to detect a high-level FGFR1 amplification, although the ctDNA AF was below 1%. Furthermore, high levels of ctDNA indicated an association with unfavorable prognosis based on overall survival. Conclusions: Screening for FGFR1 amplification in ctDNA might represent a viable strategy to identify patients eligible for treatment by FGFR inhibition, and mBC ctDNA levels might be used for the evaluation of prognosis in clinical drug trials.

7.
A A Pract ; 10(5): 103-106, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29028639

ABSTRACT

We describe a patient's personal struggle with a symptom complex consisting of profound muscle weakness requiring pyridostigmine, and metabolic abnormalities suggestive of mitochondrial disease. This included a profound sensitivity to opioids, which in the past caused severe respiratory depression during a prior hospital admission. Interestingly, the patient herself is a professor of ethics in genomic sciences, and she and her medical team thus far have not been able to formally diagnose her with mitochondrial disease. The patient now presented for a multilevel lumbar spine fusion and her hospital course and perspective on her medical odyssey are described here.

8.
Nature ; 538(7626): 477-482, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27760111

ABSTRACT

Avoidance of apoptosis is critical for the development and sustained growth of tumours. The pro-survival protein myeloid cell leukemia 1 (MCL1) is overexpressed in many cancers, but the development of small molecules targeting this protein that are amenable for clinical testing has been challenging. Here we describe S63845, a small molecule that specifically binds with high affinity to the BH3-binding groove of MCL1. Our mechanistic studies demonstrate that S63845 potently kills MCL1-dependent cancer cells, including multiple myeloma, leukaemia and lymphoma cells, by activating the BAX/BAK-dependent mitochondrial apoptotic pathway. In vivo, S63845 shows potent anti-tumour activity with an acceptable safety margin as a single agent in several cancers. Moreover, MCL1 inhibition, either alone or in combination with other anti-cancer drugs, proved effective against several solid cancer-derived cell lines. These results point towards MCL1 as a target for the treatment of a wide range of tumours.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Models, Biological , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/pathology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Thiophenes/pharmacology , Thiophenes/therapeutic use , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Male , Mice , Models, Molecular , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/metabolism , Pyrimidines/administration & dosage , Thiophenes/administration & dosage , Xenograft Model Antitumor Assays , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
9.
Breast Cancer Res Treat ; 149(1): 81-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25503779

ABSTRACT

Several publications have suggested that histone deacetylase inhibitors (HDACis) could reverse the repression of estrogen receptor alpha (ERα) in triple-negative breast cancer (TNBC) cell lines, leading to the induction of a functional protein. Using different HDACis, vorinostat, panobinostat, and abexinostat, we therefore investigated this hypothesis in various human TNBC cell lines and patient-derived xenografts (PDXs). We used three human TNBC cell lines and three PDXs. We analyzed the in vitro toxicity of the compounds, their effects on the hormone receptors and hormone-related genes and protein expression both in vitro and in vivo models. We then explored intra-tumor histone H3 acetylation under abexinostat in xenograft models. Despite major cytotoxicity of all tested HDAC inhibitors and repression of deactylation-dependent CCND1 gene, neither ERα nor ERß, ESR1 or ESR2 genes respectively, were re-expressed in vitro. In vivo, after administration of abexinostat for three consecutive days, we did not observe any induction of ESR1 or ESR1-related genes and ERα protein expression by RT-qPCR and immunohistochemical methods in PDXs. This observation was concomitant to the fact that in vivo administration of abexinostat increased intra-tumor histone H3 acetylation. These observations do not allow us to confirm previous studies which suggested that HDACis are able to convert ER-negative (ER-) tumors to ER-positive (ER+) tumors, and that a combination of HDAC inhibitors and hormone therapy could be proposed in the management of TNBC patients.


Subject(s)
Cyclin D1/biosynthesis , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/biosynthesis , Triple Negative Breast Neoplasms/drug therapy , Benzofurans/administration & dosage , Cell Proliferation/drug effects , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor beta/antagonists & inhibitors , Female , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase Inhibitors/administration & dosage , Histones/genetics , Humans , Hydroxamic Acids/administration & dosage , Indoles/administration & dosage , Panobinostat , Receptor, ErbB-2/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Vorinostat , Xenograft Model Antitumor Assays
10.
PLoS One ; 9(1): e80836, 2014.
Article in English | MEDLINE | ID: mdl-24454684

ABSTRACT

PURPOSE: Uveal melanoma (UM) is associated with a high risk of metastases and lack of efficient therapies. Reduced capacity for apoptosis induction by chemotherapies is one obstacle to efficient treatments. Human UM is characterized by high expression of the anti-apoptotic protein Bcl-2. Consequently, regulators of apoptosis such as Bcl-2 family inhibitors may constitute an attractive approach to UM therapeutics. In this aim, we have investigated the efficacy of the Bcl-2/Bcl-XL inhibitor S44563 on 4 UM Patient-Derived Xenografts (PDXs) and derived-cell lines. EXPERIMENTAL DESIGN: Four well characterized UM PDXs were used for in vivo experiments. S44563 was administered alone or combined with fotemustine either concomitantly or after the alkylating agent. Bcl-2, Bcl-XL, and Mcl-1 expressions after S44563 administration were evaluated by immunohistochemistry (IHC). RESULTS: S44563 administered alone by at 50 and 100 mg/kg i.p. induced a significant tumour growth inhibition in only one xenograft model with a clear dose effect. However, when S44563 was concomitantly administered with fotemustine, we observed a synergistic activity in 3 out of the 4 tested models. In addition, S44563 administered after fotemustine induced a tumour growth delay in 2 out of 3 tested xenografts. Finally, IHC analyses showed that Bcl-2, Bcl-XL, and Mcl-1 expression were not modified after S44563 administration. CONCLUSION: The novel anti-apoptotic experimental compound S44563, despite a relative low efficacy when administered alone, increased the efficacy of fotemustine in either concomitant or sequential combinations or indeed subsequent to fotemustine. These data support further exploration of potential therapeutic effect of Bcl-2/Bcl-xl inhibition in human UM.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Melanoma/drug therapy , Molecular Targeted Therapy , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Uveal Neoplasms/drug therapy , Xenograft Model Antitumor Assays , bcl-X Protein/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Proliferation/drug effects , Fluorescence Polarization , Heterocyclic Compounds, 3-Ring/administration & dosage , Humans , Immunohistochemistry , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, SCID , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Nitrosourea Compounds/pharmacology , Nitrosourea Compounds/therapeutic use , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/therapeutic use , Peptides/metabolism , Protein Binding/drug effects , Sulfonamides/administration & dosage , Survival Analysis , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , bcl-X Protein/metabolism
11.
Mol Cancer Ther ; 12(9): 1749-62, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23804704

ABSTRACT

Aberrant activity of the receptor tyrosine kinases MET, AXL, and FGFR1/2/3 has been associated with tumor progression in a wide variety of human malignancies, notably in instances of primary or acquired resistance to existing or emerging anticancer therapies. This study describes the preclinical characterization of S49076, a novel, potent inhibitor of MET, AXL/MER, and FGFR1/2/3. S49076 potently blocked cellular phosphorylation of MET, AXL, and FGFRs and inhibited downstream signaling in vitro and in vivo. In cell models, S49076 inhibited the proliferation of MET- and FGFR2-dependent gastric cancer cells, blocked MET-driven migration of lung carcinoma cells, and inhibited colony formation of hepatocarcinoma cells expressing FGFR1/2 and AXL. In tumor xenograft models, a good pharmacokinetic/pharmacodynamic relationship for MET and FGFR2 inhibition following oral administration of S49076 was established and correlated well with impact on tumor growth. MET, AXL, and the FGFRs have all been implicated in resistance to VEGF/VEGFR inhibitors such as bevacizumab. Accordingly, combination of S49076 with bevacizumab in colon carcinoma xenograft models led to near total inhibition of tumor growth. Moreover, S49076 alone caused tumor growth arrest in bevacizumab-resistant tumors. On the basis of these preclinical studies showing a favorable and novel pharmacologic profile of S49076, a phase I study is currently underway in patients with advanced solid tumors. Mol Cancer Ther; 12(9); 1749-62. ©2013 AACR.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Indoles/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Thiazolidinediones/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Bevacizumab , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Indoles/chemistry , Mice , Mice, Inbred BALB C , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Thiazolidinediones/chemistry , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
12.
J Nutrigenet Nutrigenomics ; 6(2): 107-22, 2013.
Article in English | MEDLINE | ID: mdl-23774190

ABSTRACT

BACKGROUND: The sterol regulatory element-binding protein (SREBP) 1c contributes to the transcriptional coordination of cholesterol, fatty acid, and carbohydrate metabolisms. Alterations in these processes accelerate the progression of hepatic steatosis and insulin resistance during aging and obesity. METHODS: Using an ex vivo chromatin immunoprecipitation coupled to microarray (ChIP-on-chip) technique combined with genome-wide gene expression analysis, we analyzed the transcriptomic adaptations mediated by Srebp-1c binding to gene promoters in the liver of mice fed with a low-fat diet or a high-fat diet (HFD) for either 1 or 12 months. RESULTS: Aging had a higher transcriptional impact than HFD and modified the expression of genes involved in fatty acid oxidation and oxidative stress. HFD was associated with a marked induction of genes involved in lipid and cholesterol metabolism. The prolonged high-fat feeding together with the aging effects stimulates inflammatory pathways. ChIP-on-chip applied to aging and HFD analyses revealed that the binding of SREBP-1c to a series of promoters accompanied a paralleled modification of gene expression. Therefore, SREBP-1c could play a role in aging and high-fat feeding through the regulation of genes involved in lipid metabolism and inflammatory response. CONCLUSIONS: This study represents an original ex vivo experiment to elucidate the molecular events involved in metabolic disorders.


Subject(s)
Aging/genetics , Dietary Fats/administration & dosage , Liver/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Transcription, Genetic , Transcriptome
13.
Drug Metabol Drug Interact ; 28(2): 67-78, 2013.
Article in English | MEDLINE | ID: mdl-23612649

ABSTRACT

Translational research is a continuum between clinical and basic research where the patient is the center of the research process. It brings clinical research to a starting point for the drug discovery process, permitting the generation of a more robust pathophysiological hypothesis essential for a better selection of drug targets and candidate optimization. It also establishes the basis of early proof for clinical concept studies, preferably in phase I, for which biomarkers and surrogate endpoints can often be used. Systems biology is a prerequisite approach to translational research where technologies and expertise are integrated and articulated to support efficient and productive realization of this concept. The first component of systems biology relies on omics-based technologies and integrates the changes in variables, such as genes, proteins and metabolites, into networks that are responsible for an organism's normal and diseased state. The second component of systems biology is in the domain of computational methods, where simulation and modeling create hypotheses of signaling pathways, transcription networks, physiological processes or even cell- or organism-based models. The simulations aim to show the origin of perturbations of the system that lead to pathological states and what treatment could be achieved to ameliorate or normalize the system. This review discusses how translational research and systems biology together could improve global understanding of drug targets, suggest new targets and approaches for therapeutics, and provide a deeper understanding of drug effects. Taken together, these types of analyses can lead to new therapeutic options while improving the safety and efficacy of new and existing medications.


Subject(s)
Drug Discovery/methods , Systems Biology/methods , Animals , Humans , Translational Research, Biomedical
14.
Neuropharmacology ; 63(6): 992-1001, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22828637

ABSTRACT

Studies of 5-HT-glutamate interactions suggest that activation of brain 5-HT(2A) receptors leads to an AMPA receptor-mediated induction of the immediate early (activity-dependent) gene, Arc (Arg3.1). In this respect, noradrenaline-glutamate interactions are poorly characterised. Here we investigated the influence on regional brain Arc gene expression of selective blockade of α(2)-adrenoceptors in rats. Several complementary techniques were used: qPCR (mRNA, discrete tissue punches), in situ hybridisation (mRNA, sections) and immunocytochemistry. The α(2)-adrenoceptor antagonist, RX 821002, dose-dependently and time-dependently (maximal effect 2 h) increased Arc mRNA levels as demonstrated both by qPCR and in situ hybridisation. The α(2)-adrenoceptor antagonist, atipamezole, also increased Arc mRNA in in situ hybridisation studies. Changes in Arc mRNA after RX 821002 were of similar magnitude in punches and intact tissue sections and region-specific, with effects being most pronounced in parietal cortex and caudate putamen, less robust in frontal cortex, and not detectable in hippocampal sub-regions. Both qPCR and in situ hybridisation studies demonstrated that RX 821002-induced Arc mRNA was blocked by the AMPA antagonist, GYKI 52466. Pretreatment with the NMDA antagonist MK 801 also prevented RX 821002-induced Arc mRNA, as did the mGluR5 antagonist MPEP, whilst the mGluR2/3 antagonist, LY341495, had no effect. Finally, immunocytochemical studies showed that RX 821002 increased Arc-immunoreactivity in cells in close apposition to α(2)-adrenoceptor-positive processes. Thus, employing three complementary techniques, these observations demonstrate that blockade of α(2)-adrenoceptors triggers brain expression of the immediate early gene, Arc, and that this effect involves the recruitment of AMPA, NMDA and mGluR5 but not mGluR2/3 glutamatergic receptors.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/pharmacology , Brain Chemistry/drug effects , Cytoskeletal Proteins/biosynthesis , Cytoskeletal Proteins/genetics , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Receptors, Glutamate/drug effects , Animals , Excitatory Amino Acid Antagonists/pharmacology , Idazoxan/analogs & derivatives , Idazoxan/pharmacology , Image Processing, Computer-Assisted , Imidazoles/pharmacology , Immunohistochemistry , In Situ Hybridization , Male , Polymerase Chain Reaction , RNA/biosynthesis , RNA/genetics , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5 , Receptors, AMPA/antagonists & inhibitors , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Serotonin/physiology
15.
Am J Physiol Cell Physiol ; 302(9): C1394-404, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22322975

ABSTRACT

Sustained overactivation of RhoA is a common component for the pathogenesis of several cardiovascular disorders, including hypertension. Although activity of Rho proteins depends on Rho exchange factors (Rho-GEFs), the identity of Rho-GEFs expressed in vascular smooth muscle cells (VSMC) and participating in the control of Rho protein activity and Rho-dependent functions remains unknown. To address this question, we analyzed by quantitative RT-PCR the expression profile of 28 RhoA-GEFs in arteries of normotensive (saline-treated) and hypertensive (ANG II-treated) rats. Sixteen RhoA-GEFs were downregulated in mesenteric arteries of hypertensive rats, among which nine are also downregulated in cultured VSMC stimulated by ANG II (100 nM, 48 h), suggesting a direct effect of ANG II. Inhibition of type 1 ANG II receptors (losartan, 1 µM) or Rho kinase (fasudil, 10 µM) prevented ANG II-induced RhoA-GEF downregulation. Functionally, ANG II-induced downregulation of RhoA-GEFs is associated with decreased Rho kinase activation in response to endothelin-1, norepinephrine, and U-46619. This work thus identifies a group of RhoA-GEFs that controls RhoA and RhoA-dependent functions in VSMC, and a negative feedback of RhoA/Rho kinase activity on the expression of these RhoA-GEFs that may play an adaptative role to limit RhoA/Rho kinase activation.


Subject(s)
Feedback, Physiological/physiology , Guanine Nucleotide Exchange Factors/biosynthesis , Hypertension/physiopathology , Muscle, Smooth, Vascular/metabolism , rho-Associated Kinases/metabolism , Angiotensin II/metabolism , Angiotensin II/toxicity , Animals , Arteries/metabolism , Blotting, Western , Gene Expression Profiling , Hypertension/chemically induced , Male , Muscle, Smooth, Vascular/physiopathology , RNA, Small Interfering , Rats , Rats, Inbred WKY , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology , Transfection
16.
J Neurosci ; 31(47): 16928-40, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22114263

ABSTRACT

"Ecstasy" [3,4-methylenedioxymetamphetamine (MDMA)] is of considerable interest in light of its prosocial properties and risks associated with widespread recreational use. Recently, it was found to bind trace amine-1 receptors (TA(1)Rs), which modulate dopaminergic transmission. Accordingly, using mice genetically deprived of TA(1)R (TA(1)-KO), we explored their significance to the actions of MDMA, which robustly activated human adenylyl cyclase-coupled TA(1)R transfected into HeLa cells. In wild-type (WT) mice, MDMA elicited a time-, dose-, and ambient temperature-dependent hypothermia and hyperthermia, whereas TA(1)-KO mice displayed hyperthermia only. MDMA-induced increases in dialysate levels of dopamine (DA) in dorsal striatum were amplified in TA(1)-KO mice, despite identical levels of MDMA itself. A similar facilitation of the influence of MDMA upon dopaminergic transmission was acquired in frontal cortex and nucleus accumbens, and induction of locomotion by MDMA was haloperidol-reversibly potentiated in TA(1)-KO versus WT mice. Conversely, genetic deletion of TA(1)R did not affect increases in DA levels evoked by para-chloroamphetamine (PCA), which was inactive at hTA(1) sites. The TA(1)R agonist o-phenyl-3-iodotyramine (o-PIT) blunted the DA-releasing actions of PCA both in vivo (dialysis) and in vitro (synaptosomes) in WT but not TA(1)-KO animals. MDMA-elicited increases in dialysis levels of serotonin (5-HT) were likewise greater in TA(1)-KO versus WT mice, and 5-HT-releasing actions of PCA were blunted in vivo and in vitro by o-PIT in WT mice only. In conclusion, TA(1)Rs exert an inhibitory influence on both dopaminergic and serotonergic transmission, and MDMA auto-inhibits its neurochemical and functional actions by recruitment of TA(1)R. These observations have important implications for the effects of MDMA in humans.


Subject(s)
Gene Deletion , N-Methyl-3,4-methylenedioxyamphetamine/antagonists & inhibitors , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/physiology , Animals , Dopamine/physiology , Dose-Response Relationship, Drug , HeLa Cells , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Random Allocation , Receptors, G-Protein-Coupled/genetics , Serotonin/physiology
17.
Neurosci Res ; 70(4): 349-60, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21609738

ABSTRACT

To improve our understanding of the molecular events underlying the effects of positive allosteric modulators of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (S)-AMPA-type glutamate receptors, gene expression profiles of primary cortical culture were measured by Agilent-Microarray technique under (S)-AMPA (1µM) stimulation for 0.5, 6, 24 and 48h in the presence or absence of S70340 (30µM), an allosteric potentiator of AMPA receptors. (S)-AMPA and S70340 treatment alone have little effect on gene expression whereas as early as 6h, their combination induced a large number of genes known to decrease apoptosis and mediate cell survival. Pathway analyses of (S)-AMPA+S70340 treatment-mediated gene expression from 6 to 48h further suggested the activation of cellular functions including neuron differentiation and neurite outgrowth. A proportion of genes implicated in these functions encode proteins involved in environmental cues and are expressed in growth cones, such as extracellular matrix component proteins and filopodia microfilament-associated proteins. Time course analysis of mRNA expression combined with in silico promoter analysis revealed an enrichment in the cAMP response element (CRE) among co-regulated genes. This study demonstrated that S70340-mediated AMPA potentialisation activated genes and functional processes involved in neuroprotective and cognitive effects and describes putative new functional biomarkers.


Subject(s)
Cerebral Cortex/physiology , Gene Expression Profiling/methods , Genome-Wide Association Study/methods , Receptors, AMPA/agonists , Receptors, AMPA/physiology , Animals , Cells, Cultured , Cerebral Cortex/drug effects , Gene Regulatory Networks/genetics , Rats , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/analogs & derivatives , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
18.
PLoS One ; 6(2): e17237, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21390316

ABSTRACT

c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of ß-catenin at cell membranes and a reduction of expression of ß-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice. Re-introduction of c-Yes, but not c -Src, restores transforming properties of c-Yes depleted cells. Moreover, we found that c-Yes kinase activity is required for its role in ß-catenin localisation and growth in soft agar, whereas kinase activity is dispensable for its role in cell migration. We conclude that c-Yes regulates specific oncogenic signalling pathways important for colon cancer progression that is not shared with c-Src.


Subject(s)
Carcinoma/pathology , Cell Transformation, Neoplastic/genetics , Colonic Neoplasms/pathology , Proto-Oncogene Proteins c-yes/physiology , Animals , Carcinoma/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , Disease Progression , Female , Gene Knockdown Techniques , HCT116 Cells , HT29 Cells , Humans , Mice , Mice, Nude , Mice, SCID , Organ Specificity/genetics , Proto-Oncogene Proteins c-yes/antagonists & inhibitors , Proto-Oncogene Proteins c-yes/genetics , Proto-Oncogene Proteins pp60(c-src)/genetics , Proto-Oncogene Proteins pp60(c-src)/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Transplantation, Heterologous , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/genetics , src-Family Kinases/physiology
19.
J Hepatol ; 55(4): 866-75, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21338642

ABSTRACT

BACKGROUND & AIMS: Neuropilin-1 (NRP1) is a transmembrane co-receptor for semaphorins and heparin-binding pro-angiogenic cytokines, principally members of the vascular endothelial growth factor family. Recent studies revealed an important role of NRP1 in angiogenesis and malignant progression of many cancers. The role of NRP1 in the development of hepatocellular carcinoma (HCC) is not completely understood. METHODS: We used human tissue microarrays and a mouse transgenic model of HCC to establish the spatio-temporal patterns of NRP1 expression in HCC. To evaluate the therapeutic potential of targeting NRP1 in HCC, we treated HCC mice with peptide N, an NRP1 binding recombinant protein and competitive inhibitor of the VEGF-A(165)/NRP1 interaction. RESULTS: We demonstrate that NRP1 is expressed in hepatic endothelial cells of both human healthy biopsies and in HCC samples, but not in normal hepatocytes. We found that increased NRP1 expression in human tumour hepatocytes is significantly associated with primary HCC. Using RT-PCR, Western blot and immunofluorescence analysis we show that NRP1 expression in the liver of transgenic HCC mice is increased with disease progression, in both vascular and tumour compartments. Blocking NRP1 function with peptide N leads to the inhibition of vascular remodelling and tumour liver growth in HCC mice. CONCLUSIONS: Our results indicate a specific role of NRP1 in HCC growth and vascular remodelling and highlight the possibility of therapeutically targeting NRP1 for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular/physiopathology , Liver Neoplasms/physiopathology , Neovascularization, Pathologic/physiopathology , Neuropilin-1/metabolism , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Division/drug effects , Cell Division/physiology , Disease Progression , Female , Gene Expression Regulation, Neoplastic/physiology , Hep G2 Cells , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/pharmacology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Neuropilin-1/antagonists & inhibitors , Neuropilin-1/genetics , Peptides/pharmacology , Up-Regulation/physiology
20.
PPAR Res ; 20102010.
Article in English | MEDLINE | ID: mdl-20953342

ABSTRACT

Rosiglitazone (RSG), developed for the treatment of type 2 diabetes mellitus, is known to have potent effects on carbohydrate and lipid metabolism leading to the improvement of insulin sensitivity in target tissues. To further assess the capacity of RSG to normalize gene expression in insulin-sensitive tissues, we compared groups of 18-day-treated db/db mice with increasing oral doses of RSG (10, 30, and 100 mg/kg/d) with untreated non-diabetic littermates (db/+). For this aim, transcriptional changes were measured in liver, inguinal adipose tissue (IAT) and soleus muscle using microarrays and real-time PCR. In parallel, targeted metabolomic assessment of lipids (triglycerides (TGs) and free fatty acids (FFAs)) in plasma and tissues was performed by UPLC-MS methods. Multivariate analyses revealed a relationship between the differential gene expressions in liver and liver trioleate content and between blood glucose levels and a combination of differentially expressed genes measured in liver, IAT, and muscle. In summary, we have integrated gene expression and targeted metabolomic data to present a comprehensive overview of RSG-induced changes in a diabetes mouse model and improved the molecular understanding of how RSG ameliorates diabetes through its effect on the major insulin-sensitive tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...