Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 122: 168-175, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25522853

ABSTRACT

Aerobic composting and anaerobic digestion plays an important role in reduction of organic waste by transforming the waste into humus, which is an excellent soil conditioner. However, applications of chemical-contaminated composts on soils may have unwanted consequences such as accumulation of persistent compounds and their transfer into food chains. The present study investigated burden of composts and digestates collected in 16 European countries (88 samples) by the compounds causing dioxin-like effects as determined by use of an in vitro transactivation assay to quantify total concentrations of aryl hydrocarbon receptor-(AhR) mediated potency. Measured concentrations of 2,3,7,8-Tetrachlorodibeno-p-dioxin (2,3,7,8-TCDD) equivalents (TEQbio) were compared to concentrations of polycyclic aromatic hydrocarbons (PAHs) and selected chlorinated compounds, including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), co-planar polychlorinated biphenyls (PCBs), indicator PCB congeners and organochlorine pesticides (OCPs). Median concentrations of TEQbio (dioxin-like compounds) determined by the in vitro assay in crude extracts of various types of composts ranged from 0.05 to 1.2 with a maximum 8.22µg (TEQbio)kg(-1) dry mass. Potencies were mostly associated with less persistent compounds such as PAHs because treatment with sulfuric acid removed bioactivity from most samples. The pan-European investigation of contamination by organic contaminants showed generally good quality of the composts, the majority of which were in compliance with conservative limits applied in some countries. Results demonstrate performance and added value of rapid, inexpensive, effect-based monitoring, and points out the need to derive corresponding effect-based trigger values for the risk assessment of complex contaminated matrices such as composts.


Subject(s)
Dioxins/analysis , Hydrocarbons, Chlorinated/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil/chemistry , Animals , Biological Assay , Cell Line, Tumor , Dioxins/pharmacology , Europe , Hydrocarbons, Chlorinated/pharmacology , Polycyclic Aromatic Hydrocarbons/pharmacology , Rats , Receptors, Aryl Hydrocarbon/metabolism , Risk Assessment , Soil Pollutants/pharmacology
2.
Chemosphere ; 95: 329-35, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24120015

ABSTRACT

Chemical composition data for the Danube River and its tributaries sediments were analyzed using positive matrix factorization (PMF). The objective was to identify both natural and anthropogenic sources affecting Danube Basin. During the Joint Danube Survey 2 (JDS2) campaign 148 bottom sediments samples were collected. The following elements were analyzed using the X-ray fluorescence technique: Al, As, Ca, Cd, Cl, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V and Zn. Mercury was determined by cold vapour atomic absorption spectrometry. Three factors were obtained considering the whole dataset (Danube and tributaries), identified as: (i) carbonate component characterized by Ca and Mg; (ii) alumino-silicate component dominated by Si and Al content and the presence of some metals attributed to natural processes; (iii) anthropogenic source identified by Hg, S, P and some heavy metals load. To better characterize the role of tributaries, the Danube and tributaries datasets, were also analyzed separately. The same three factor structures were identified in the Danube dataset. For the tributaries, a four-factor source model gave one further factor dominated by S and P, which could be attributed to the use of fertilizers in agriculture.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Agriculture , Europe, Eastern , Metals, Heavy/analysis , Multivariate Analysis
3.
Water Res ; 47(17): 6475-87, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24091184

ABSTRACT

In the year 2010, effluents from 90 European wastewater treatment plants (WWTPs) were analyzed for 156 polar organic chemical contaminants. The analyses were complemented by effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analyzed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. Analyses of organic substances were performed by solid-phase extraction (SPE) or liquid-liquid extraction (LLE) followed by liquid chromatography tandem mass spectrometry (LC-MS-MS) or gas chromatography high-resolution mass spectrometry (GC-HRMS). Target microcontaminants were pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites), industrial chemicals such as benzotriazoles (corrosion inhibitors), iodinated x-ray contrast agents, and gadolinium magnetic resonance imaging agents; in addition biological endpoints were measured. The obtained results show the presence of 125 substances (80% of the target compounds) in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results allow for an estimation to be made of a European median level for the chemicals investigated in WWTP effluents. The most relevant compounds in the effluent waters with the highest median concentration levels were the artificial sweeteners acesulfame and sucralose, benzotriazoles (corrosion inhibitors), several organophosphate ester flame retardants and plasticizers (e.g. tris(2-chloroisopropyl)phosphate; TCPP), pharmaceutical compounds such as carbamazepine, tramadol, telmisartan, venlafaxine, irbesartan, fluconazole, oxazepam, fexofenadine, diclofenac, citalopram, codeine, bisoprolol, eprosartan, the antibiotics trimethoprim, ciprofloxacine, sulfamethoxazole, and clindamycine, the insect repellent N,N'-diethyltoluamide (DEET), the pesticides MCPA and mecoprop, perfluoroalkyl substances (such as PFOS and PFOA), caffeine, and gadolinium.


Subject(s)
Data Collection , Environmental Monitoring , European Union , Organic Chemicals/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification , Diatoms/drug effects , Household Products/analysis , Organic Chemicals/toxicity , Saccharomyces cerevisiae/drug effects , Toxicity Tests, Acute , Waste Disposal, Fluid , Water Pollutants, Chemical/toxicity
4.
Water Res ; 44(14): 4115-26, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20554303

ABSTRACT

This study provides the first pan-European reconnaissance of the occurrence of polar organic persistent pollutants in European ground water. In total, 164 individual ground-water samples from 23 European Countries were collected and analysed (among others) for 59 selected organic compounds, comprising pharmaceuticals, antibiotics, pesticides (and their transformation products), perfluorinated acids (PFAs), benzotriazoles, hormones, alkylphenolics (endocrine disrupters), Caffeine, Diethyltoluamide (DEET), and Triclosan. The most relevant compounds in terms of frequency of detection and maximum concentrations detected were DEET (84%; 454 ng/L), Caffeine (83%; 189 ng/L), PFOA (66%; 39 ng/L), Atrazine (56%; 253 ng/L), Desethylatrazine (55%; 487 ng/L), 1H-Benzotriazole (53%; 1032 ng/L), Methylbenzotriazole (52%; 516 ng/L), Desethylterbutylazine (49%; 266 ng/L), PFOS (48%, 135 ng/L), Simazine (43%; 127 ng/L), Carbamazepine (42%; 390 ng/L), nonylphenoxy acetic acid (NPE(1)C) (42%; 11 microg/L), Bisphenol A (40%; 2.3 microg/L), PFHxS (35%; 19 ng/L), Terbutylazine (34%; 716 ng/L), Bentazone (32%; 11 microg/L), Propazine (32%; 25 ng/L), PFHpA (30%; 21 ng/L), 2,4-Dinitrophenol (29%; 122 ng/L), Diuron (29%; 279 ng/L), and Sulfamethoxazole (24%; 38 ng/L). The chemicals which were detected most frequently above the European ground water quality standard for pesticides of 0.1 microg/L were Chloridazon-desphenyl (26 samples), NPE(1)C (20), Bisphenol A (12), Benzotriazole (8), N,N'-Dimethylsulfamid (DMS) (8), Desethylatrazine (6), Nonylphenol (6), Chloridazon-methyldesphenyl (6), Methylbenzotriazole (5), Carbamazepine (4), and Bentazone (4). However, only 1.7% of all single analytical measurements (in total 8000) were above this threshold value of 0.1 microg/L; 7.3% were > than 10 ng/L.


Subject(s)
Fresh Water/analysis , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Caffeine/analysis , DEET/analysis , Data Collection , Environmental Monitoring/methods , Europe , Fluorocarbons/analysis , Pesticides/analysis , Pharmaceutical Preparations/analysis , Static Electricity , Triclosan/analysis
5.
Water Res ; 44(7): 2325-35, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20074769

ABSTRACT

Polar water-soluble organic contaminants were analysed in the dissolved liquid water phase of river water samples from the Danube River and its major tributaries (within the Joint Danube Survey 2). Analyses were performed by solid-phase extraction (SPE) followed by triple-quadrupole liquid chromatography mass spectrometry (LC-MS(2)). In total, 34 different polar organic compounds were screened. Focus was given on pharmaceutical compounds (such as ibuprofen, diclofenac, sulfamethoxazole, carbamazepine), pesticides and their degradation products (e.g. bentazone, 2,4-D, mecoprop, atrazine, terbutylazine, desethylterbutylazine), perfluorinated acids (PFOS; PFOA), and endocrine disrupting compounds (nonylphenol, NPE(1)C, bisphenol A, estrone). The most relevant polar compounds identified in the Danube River basin in terms of frequency of detection, persistency, and concentration levels were 1H-benzotriazole (median concentration 185 ng/L), caffeine (87 ng/L), tolyltriazole (73 ng/L), nonylphenoxy acetic acid (49 ng/L), carbamazepine (33 ng/L), 4-nitrophenol (29 ng/L), 2,4-dinitrophenol (19 ng/L), PFOA (17 ng/L), sulfamethoxazole (16 ng/L), desethylatrazine (11 ng/L), and 2,4-D (10 ng/L). The highest contamination levels were found in the area around Budapest and in the tributary rivers Arges (Romania), Timok (Bulgaria), Rusenski Lom (Bulgaria), and Velika Morava (Serbia).


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Organic Chemicals/analysis , Rivers/chemistry , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Bulgaria , Endocrine Disruptors/analysis , Endocrine Disruptors/isolation & purification , Geography , Hungary , Organic Chemicals/chemistry , Organic Chemicals/isolation & purification , Pesticides/analysis , Pesticides/isolation & purification , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/isolation & purification , Romania , Serbia , Solubility , Water Pollutants, Chemical/isolation & purification
6.
J Chromatogr A ; 1216(7): 1126-31, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19131070

ABSTRACT

An analytical method was developed for the analysis of sucralose, a persistent chlorinated calorie-free sugar substitute, in surface waters. The method is based on solid-phase extraction (SPE) of 400mL water using Oasis HLB (Waters) adsorber material, followed by negative electrospray ionization (ESI) triple quadrupole LC-MS-MS detection. Quantification was performed by external calibration, as well as by isotope dilution with deuterated sucralose d6 internal standard. Extraction with Oasis HLB, a polymeric adsorbent suited for polar compounds, was much more efficient at neutral pH than at pH 3; a recovery of 62+/-9% (n=6; determined at 1microg/L) could be achieved. Strong ion suppression caused by matrix substances was observed for sucralose in the SPE extracts. The analysis of 120 river surface water samples from 27 European countries showed that sucralose, which is in use in Europe since beginning 2005, can be found in the aquatic environment, at concentrations up to 1microg/L. Sucralose was predominately found in samples from the UK, Belgium, the Netherlands, France, Switzerland, Spain, Italy, Norway, and Sweden, suggesting an increased use of the substance in Western Europe.


Subject(s)
Chromatography, Liquid/methods , Fresh Water/chemistry , Solid Phase Extraction/methods , Spectrometry, Mass, Electrospray Ionization/methods , Sucrose/analogs & derivatives , Water Pollutants, Chemical/analysis , Adsorption , European Union , Humans , Hydrogen-Ion Concentration , Reproducibility of Results , Sucrose/analysis
7.
Environ Pollut ; 157(2): 561-8, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18952330

ABSTRACT

This study provides the first EU-wide reconnaissance of the occurrence of polar organic persistent pollutants in European river waters. More than 100 individual water samples from over 100 European rivers from 27 European Countries were analysed for 35 selected compounds, comprising pharmaceuticals, pesticides, PFOS, PFOA, benzotriazoles, hormones, and endocrine disrupters. Around 40 laboratories participated in this sampling exercise. The most frequently and at the highest concentration levels detected compounds were benzotriazole, caffeine, carbamazepine, tolyltriazole, and nonylphenoxy acetic acid (NPE(1)C). Only about 10% of the river water samples analysed could be classified as "very clean" in terms of chemical pollution. The rivers responsible for the major aqueous emissions of PFOS and PFOA from the European Continent could be identified. For the target compounds chosen, we are proposing "indicative warning levels" in surface waters, which are (for most compounds) close to the 90th percentile of all water samples analysed.


Subject(s)
Fresh Water/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Chromatography, Liquid/methods , Environmental Monitoring/methods , European Union , Mass Spectrometry/methods , Organic Chemicals/analysis , Solid Phase Extraction/methods , Water Pollution, Chemical/statistics & numerical data
8.
Chemosphere ; 71(2): 306-13, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17959224

ABSTRACT

C7-C11 perfluorinated carboxylates (PFACs) and perfluorooctansulfonate (PFOS) were analysed in selected stretches of the River Po and its major tributaries. Analyses were performed by solid-phase extraction (SPE) with Oasis HLB cartridges and methanol elution followed by LC-MS-MS detection using 13C-labelled internal standards. High concentration levels ( approximately 1.3 microg l(-1)) of perfluorooctanoate (PFOA) were detected in the Tánaro River close to the city Alessandria. After this tributary, levels between 60 and 337 ng l(-1) were measured in the Po River on several occasions. The PFOA concentration close to the river mouth in Ferrara was between 60 and 174 ng l(-1). Using the river discharge flow data in m3 s(-1) at this point (average approximately 920 m3 s(-1) for the year 2006), a mass load of approximately 0.3 kg PFOA per hour or approximately 2.6 tons per year discharged in the Adriatic Sea has been calculated. PFOS concentration levels in the Po River at Ferrara were approximately 10 ng l(-1).


Subject(s)
Fluorocarbons/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Environmental Monitoring , Italy , Solid Phase Extraction , Tandem Mass Spectrometry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...