Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Pharmaceutics ; 15(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36678865

ABSTRACT

The development of new vaccine adjuvants represents a key approach to improvingi the immune responses to recombinant vaccine antigens. Emulsion adjuvants, such as AS03 and MF59, in combination with influenza vaccines, have allowed antigen dose sparing, greater breadth of responses and fewer immunizations. It has been demonstrated previously that emulsion adjuvants can be prepared using a simple, low-shear process of self-emulsification (SE). The role of alpha tocopherol as an immune potentiator in emulsion adjuvants is clear from the success of AS03 in pandemic responses, both to influenza and COVID-19. Although it was a significant formulation challenge to include alpha tocopherol in an emulsion prepared by a low-shear process, the resultant self-emulsifying adjuvant system (SE-AS) showed a comparable effect to the established AS03 when used with a quadrivalent influenza vaccine (QIV). In this paper, we first optimized the SE-AS with alpha tocopherol to create SE-AS44, which allowed the emulsion to be sterile-filtered. Then, we compared the in vitro cell activation cytokine profile of SE-AS44 with the self-emulsifying adjuvant 160 (SEA160), a squalene-only adjuvant. In addition, we evaluated SE-AS44 and SEA160 competitively, in combination with a recombinant cytomegalovirus (CMV) pentamer antigen mouse.

3.
NPJ Vaccines ; 6(1): 158, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34934069

ABSTRACT

Emulsion adjuvants such as MF59 and AS03 have been used for more than two decades as key components of licensed vaccines, with over 100 million doses administered to diverse populations in more than 30 countries. Substantial clinical experience of effectiveness and a well-established safety profile, along with the ease of manufacturing have established emulsion adjuvants as one of the leading platforms for the development of pandemic vaccines. Emulsion adjuvants allow for antigen dose sparing, more rapid immune responses, and enhanced quality and quantity of adaptive immune responses. The mechanisms of enhancement of immune responses are well defined and typically characterized by the creation of an "immunocompetent environment" at the site of injection, followed by the induction of strong and long-lasting germinal center responses in the draining lymph nodes. As a result, emulsion adjuvants induce distinct immunological responses, with a mixed Th1/Th2 T cell response, long-lived plasma cells, an expanded repertoire of memory B cells, and high titers of cross-neutralizing polyfunctional antibodies against viral variants. Because of these various properties, emulsion adjuvants were included in pandemic influenza vaccines deployed during the 2009 H1N1 influenza pandemic, are still included in seasonal influenza vaccines, and are currently at the forefront of the development of vaccines against emerging SARS-CoV-2 pandemic variants. Here, we comprehensively review emulsion adjuvants, discuss their mechanism of action, and highlight their profile as a benchmark for the development of additional vaccine adjuvants and as a valuable tool to allow further investigations of the general principles of human immunity.

4.
Semin Immunol ; 50: 101426, 2020 08.
Article in English | MEDLINE | ID: mdl-33257234

ABSTRACT

In the last decade there have been some significant advances in vaccine adjuvants, particularly in relation to their inclusion in licensed products. This was proceeded by several decades in which such advances were very scarce, or entirely absent, but several novel adjuvants have now been included in licensed products, including in the US. These advances have relied upon several key technological insights that have emerged in this time period, which have finally allowed an in depth understanding of how adjuvants work. These advances include developments in systems biology approaches which allow the hypotheses first advanced in pre-clinical studies to be critically evaluated in human studies. This review highlights these recent advances, both in relation to the adjuvants themselves, but also the technologies that have enabled their successes. Moreover, we critically appraise what will come next, both in terms of new adjuvant molecules, and the technologies needed to allow them to succeed. We confidently predict that additional adjuvants will emerge in the coming years that will reach approval in licensed products, but that the components might differ significantly from those which are currently used. Gradually, the natural products that were originally used to build adjuvants, since they were readily available at the time of initial development, will come to be replaced by synthetic or biosynthetic materials, with more appealing attributes, including more reliable and robust supply, along with reduced heterogeneity. The recent advance in vaccine adjuvants is timely, given the need to create novel vaccines to deal with the COVID-19 pandemic. Although, we must ensure that the rigorous safety evaluations that allowed the current adjuvants to advance are not 'short-changed' in the push for new vaccines to meet the global challenge as quickly as possible, we must not jeopardize what we have achieved, by pushing less established technologies too quickly, if the data does not fully support it.


Subject(s)
Adjuvants, Immunologic/therapeutic use , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Alum Compounds/pharmacology , COVID-19/immunology , COVID-19 Vaccines/therapeutic use , Humans , SARS-CoV-2/immunology , Systems Biology , Vaccinology/methods
5.
J Control Release ; 316: 12-21, 2019 12 28.
Article in English | MEDLINE | ID: mdl-31678654

ABSTRACT

α-Tocopherol has been used as an immune supplement in humans, as an emulsion adjuvant component in several veterinary vaccines as well as an immunomodulatory component of AS03, an emulsion adjuvant that was used in an H1N1 pandemic vaccine (Pandemrix). AS03 is manufactured using microfluidization and high-pressure homogenization. Such high energy and complex manufacturing processes make it difficult and expensive to produce emulsion adjuvants on a large scale, especially in developing countries. In this study we have explored simpler, comparatively inexpensive methods, to formulate emulsion adjuvants containing α-tocopherol, that have the potential to be made in any well-established scale-up facility. This might facilitate producing and stock-piling adjuvant doses and therefore aide in pandemic preparedness. We used design of experiment as a tool to explore incorporating α-tocopherol into self-emulsified systems containing squalene oil and polysorbate 80. We created novel self-emulsified adjuvant systems (SE-AS) and evaluated their potency in vivo in BALB/c mice with inactivated quadrivalent influenza vaccine (QIV) and tested the cellular and humoral immune responses against the four vaccine strains.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , alpha-Tocopherol/administration & dosage , Animals , Emulsions , Female , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Mice , Mice, Inbred BALB C , Polysorbates/chemistry , Squalene/chemistry , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , alpha-Tocopherol/immunology
6.
J Pharm Sci ; 107(9): 2310-2314, 2018 09.
Article in English | MEDLINE | ID: mdl-29883663

ABSTRACT

Adjuvants are required to enhance immune responses to typically poorly immunogenic recombinant antigens. Toll-like receptor agonists (TLRa) have been widely evaluated as adjuvants because they activate the innate immune system. Currently, licensed vaccines adjuvanted with TLRa include the TLR4 agonist monophosphoryl lipid, while additional TLRa are in clinical development. Unfortunately, naturally derived TLRa are often complex and heterogeneous entities, which brings formulation challenges. Consequently, the use of synthetic small-molecule TLRa has significant advantages because they are well-defined discrete molecules, which can be chemically modified to modulate their physicochemical properties. We previously described the discovery of a family of TLR7 agonists based on a benzonaphthyridine scaffold. In addition, we described how Alum could be used to deliver these synthetic TLRa. An alternative adjuvant approach with enhanced potency over Alum are squalene containing oil-in-water emulsions, which have been included in licensed influenza vaccines, including Fluad (MF59 adjuvanted) and Pandemrix (AS03 adjuvanted). Here, we describe how to enable the co-delivery of a TLR7 agonist in a squalene-based oil-in-water emulsion, for adjuvant evaluation.


Subject(s)
Antigens, Bacterial/administration & dosage , Antigens, Bacterial/immunology , Drug Delivery Systems/methods , Emulsions/administration & dosage , Immunity, Cellular/immunology , Nanocapsules/administration & dosage , Animals , Drug Stability , Female , Immunity, Cellular/drug effects , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...