Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 99: 105881, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906200

ABSTRACT

The immortalised human hepatocellular HepG2 cell line is commonly used for toxicology studies as an alternative to animal testing due to its characteristic liver-distinctive functions. However, little is known about the baseline metabolic changes within these cells upon toxin exposure. We have applied 1H Nuclear Magnetic Resonance (NMR) spectroscopy to characterise the biochemical composition of HepG2 cells at baseline and post-exposure to hydrogen peroxide (H2O2). Metabolic profiles of live cells, cell extracts, and their spent media supernatants were obtained using 1H high-resolution magic angle spinning (HR-MAS) NMR and 1H NMR spectroscopic techniques. Orthogonal partial least squares discriminant analysis (O-PLS-DA) was used to characterise the metabolites that differed between the baseline and H2O2 treated groups. The results showed that H2O2 caused alterations to 10 metabolites, including acetate, glutamate, lipids, phosphocholine, and creatine in the live cells; 25 metabolites, including acetate, alanine, adenosine diphosphate (ADP), aspartate, citrate, creatine, glucose, glutamine, glutathione, and lactate in the cell extracts, and 22 metabolites, including acetate, alanine, formate, glucose, pyruvate, phenylalanine, threonine, tryptophan, tyrosine, and valine in the cell supernatants. At least 10 biochemical pathways associated with these metabolites were disrupted upon toxin exposure, including those involved in energy, lipid, and amino acid metabolism. Our findings illustrate the ability of NMR-based metabolic profiling of immortalised human cells to detect metabolic effects on central metabolism due to toxin exposure. The established data sets will enable more subtle biochemical changes in the HepG2 model cell system to be identified in future toxicity testing.


Subject(s)
Hydrogen Peroxide , Proton Magnetic Resonance Spectroscopy , Humans , Hep G2 Cells , Hydrogen Peroxide/toxicity , Magnetic Resonance Spectroscopy , Metabolome/drug effects , Toxicity Tests/methods
2.
J Proteome Res ; 23(4): 1328-1340, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38513133

ABSTRACT

Delayed diagnosis of patients with sepsis or septic shock is associated with increased mortality and morbidity. UPLC-MS and NMR spectroscopy were used to measure panels of lipoproteins, lipids, biogenic amines, amino acids, and tryptophan pathway metabolites in blood plasma samples collected from 152 patients within 48 h of admission into the Intensive Care Unit (ICU) where 62 patients had no sepsis, 71 patients had sepsis, and 19 patients had septic shock. Patients with sepsis or septic shock had higher concentrations of neopterin and lower levels of HDL cholesterol and phospholipid particles in comparison to nonsepsis patients. Septic shock could be differentiated from sepsis patients based on different concentrations of 10 lipids, including significantly lower concentrations of five phosphatidylcholine species, three cholesterol esters, one dihydroceramide, and one phosphatidylethanolamine. The Supramolecular Phospholipid Composite (SPC) was reduced in all ICU patients, while the composite markers of acute phase glycoproteins were increased in the sepsis and septic shock patients within 48 h admission into ICU. We show that the plasma metabolic phenotype obtained within 48 h of ICU admission is diagnostic for the presence of sepsis and that septic shock can be differentiated from sepsis based on the lipid profile.


Subject(s)
Sepsis , Shock, Septic , Humans , Chromatography, Liquid , Tandem Mass Spectrometry , Sepsis/diagnosis , Intensive Care Units , Phenotype , Phospholipids
3.
J Proteome Res ; 23(3): 956-970, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38310443

ABSTRACT

We present compelling evidence for the existence of an extended innate viperin-dependent pathway, which provides crucial evidence for an adaptive response to viral agents, such as SARS-CoV-2. We show the in vivo biosynthesis of a family of novel endogenous cytosine metabolites with potential antiviral activities. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy revealed a characteristic spin-system motif, indicating the presence of an extended panel of urinary metabolites during the acute viral replication phase. Mass spectrometry additionally enabled the characterization and quantification of the most abundant serum metabolites, showing the potential diagnostic value of the compounds for viral infections. In total, we unveiled ten nucleoside (cytosine- and uracil-based) analogue structures, eight of which were previously unknown in humans allowing us to propose a new extended viperin pathway for the innate production of antiviral compounds. The molecular structures of the nucleoside analogues and their correlation with an array of serum cytokines, including IFN-α2, IFN-γ, and IL-10, suggest an association with the viperin enzyme contributing to an ancient endogenous innate immune defense mechanism against viral infection.


Subject(s)
COVID-19 , Humans , Molecular Structure , SARS-CoV-2 , Immunity, Innate , Cytosine , Metabolic Networks and Pathways , Antiviral Agents
4.
J Proteome Res ; 23(2): 809-821, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38230637

ABSTRACT

The rising prevalence of obesity in Saudi Arabia is a major contributor to the nation's high levels of cardiometabolic diseases such as type 2 diabetes. To assess the impact of obesity on the diabetic metabolic phenotype presented in young Saudi Arabian adults, participants (n = 289, aged 18-40 years) were recruited and stratified into four groups: healthy weight (BMI 18.5-24.99 kg/m2) with (n = 57) and without diabetes (n = 58) or overweight/obese (BMI > 24.99 kg/m2) with (n = 102) and without diabetes (n = 72). Distinct plasma metabolic phenotypes associated with high BMI and diabetes were identified using nuclear magnetic resonance spectroscopy and ultraperformance liquid chromatography mass spectrometry. Increased plasma glucose and dysregulated lipoproteins were characteristics of obesity in individuals with and without diabetes, but the obesity-associated lipoprotein phenotype was partially masked in individuals with diabetes. Although there was little difference between diabetics and nondiabetics in the global plasma LDL cholesterol and phospholipid concentration, the distribution of lipoprotein particles was altered in diabetics with a shift toward denser and more atherogenic LDL5 and LDL6 particles, which was amplified in the presence of obesity. Further investigation is warranted in larger Middle Eastern populations to explore the dysregulation of metabolism driven by interactions between obesity and diabetes in young adults.


Subject(s)
Diabetes Mellitus, Type 2 , Young Adult , Humans , Saudi Arabia/epidemiology , Body Mass Index , Obesity/complications , Obesity/metabolism , Lipoproteins
5.
J Proteome Res ; 23(8): 2893-2907, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38104259

ABSTRACT

Globally, burns are a significant cause of injury that can cause substantial acute trauma as well as lead to increased incidence of chronic comorbidity and disease. To date, research has primarily focused on the systemic response to severe injury, with little in the literature reported on the impact of nonsevere injuries (<15% total burn surface area; TBSA). To elucidate the metabolic consequences of a nonsevere burn injury, longitudinal plasma was collected from adults (n = 35) who presented at hospital with a nonsevere burn injury at admission, and at 6 week follow up. A cross-sectional baseline sample was also collected from nonburn control participants (n = 14). Samples underwent multiplatform metabolic phenotyping using 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry to quantify 112 lipoprotein and glycoprotein signatures and 852 lipid species from across 20 subclasses. Multivariate data modeling (orthogonal projections to latent structures-discriminate analysis; OPLS-DA) revealed alterations in lipoprotein and lipid metabolism when comparing the baseline control to hospital admission samples, with the phenotypic signature found to be sustained at follow up. Univariate (Mann-Whitney U) testing and OPLS-DA indicated specific increases in GlycB (p-value < 1.0e-4), low density lipoprotein-2 subfractions (variable importance in projection score; VIP > 6.83e-1) and monoacyglyceride (20:4) (p-value < 1.0e-4) and decreases in circulating anti-inflammatory high-density lipoprotein-4 subfractions (VIP > 7.75e-1), phosphatidylcholines, phosphatidylglycerols, phosphatidylinositols, and phosphatidylserines. The results indicate a persistent systemic metabolic phenotype that occurs even in cases of a nonsevere burn injury. The phenotype is indicative of an acute inflammatory profile that continues to be sustained postinjury, suggesting an impact on systems health beyond the site of injury. The phenotypes contained metabolic signatures consistent with chronic inflammatory states reported to have an elevated incidence postburn injury. Such phenotypic signatures may provide patient stratification opportunities, to identify individual responses to injury, personalize intervention strategies, and improve acute care, reducing the risk of chronic comorbidity.


Subject(s)
Burns , Inflammation , Phenotype , Humans , Burns/complications , Burns/blood , Burns/metabolism , Male , Adult , Female , Middle Aged , Inflammation/blood , Inflammation/metabolism , Cross-Sectional Studies , Lipoproteins/blood , Lipid Metabolism , Metabolomics/methods , Longitudinal Studies , Mass Spectrometry , Chromatography, Liquid , Magnetic Resonance Spectroscopy
6.
Front Nutr ; 10: 1230480, 2023.
Article in English | MEDLINE | ID: mdl-38111603

ABSTRACT

Rationale: Evidence suggests consumption of a Mediterranean diet (MD) can positively impact both maternal and offspring health, potentially mediated by a beneficial effect on inflammatory pathways. We aimed to apply metabolic profiling of serum and urine samples to assess differences between women who were stratified into high and low alignment to a MD throughout pregnancy and investigate the relationship of the diet to inflammatory markers. Methods: From the ORIGINS cohort, 51 pregnant women were stratified for persistent high and low alignment to a MD, based on validated MD questionnaires. 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate the urine and serum metabolite profiles of these women at 36 weeks of pregnancy. The relationship between diet, metabolite profile and inflammatory status was investigated. Results: There were clear differences in both the food choice and metabolic profiles of women who self-reported concordance to a high (HMDA) and low (LMDA) Mediterranean diet, indicating that alignment with the MD was associated with a specific metabolic phenotype during pregnancy. Reduced meat intake and higher vegetable intake in the HMDA group was supported by increased levels of urinary hippurate (p = 0.044) and lower creatine (p = 0.047) levels. Serum concentrations of the NMR spectroscopic inflammatory biomarkers GlycA (p = 0.020) and GlycB (p = 0.016) were significantly lower in the HDMA group and were negatively associated with serum acetate, histidine and isoleucine (p < 0.05) suggesting a greater level of plant-based nutrients in the diet. Serum branched chain and aromatic amino acids were positively associated with the HMDA group while both urinary and serum creatine, urine creatinine and dimethylamine were positively associated with the LMDA group. Conclusion: Metabolic phenotypes of pregnant women who had a high alignment with the MD were significantly different from pregnant women who had a poor alignment with the MD. The metabolite profiles aligned with reported food intake. Differences were most significant biomarkers of systemic inflammation and selected gut-microbial metabolites. This research expands our understanding of the mechanisms driving health outcomes during the perinatal period and provides additional biomarkers for investigation in pregnant women to assess potential health risks.

SELECTION OF CITATIONS
SEARCH DETAIL