Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 14, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212558

ABSTRACT

Ancient DNA is a valuable tool for investigating genetic and evolutionary history that can also provide detailed profiles of the lives of ancient individuals. In this study, we develop a generalised computational approach to detect aneuploidies (atypical autosomal and sex chromosome karyotypes) in the ancient genetic record and distinguish such karyotypes from contamination. We confirm that aneuploidies can be detected even in low-coverage genomes ( ~ 0.0001-fold), common in ancient DNA. We apply this method to ancient skeletal remains from Britain to document the first instance of mosaic Turner syndrome (45,X0/46,XX) in the ancient genetic record in an Iron Age individual sequenced to average 9-fold coverage, the earliest known incidence of an individual with a 47,XYY karyotype from the Early Medieval period, as well as individuals with Klinefelter (47,XXY) and Down syndrome (47,XY, + 21). Overall, our approach provides an accessible and automated framework allowing for the detection of individuals with aneuploidies, which extends previous binary approaches. This tool can facilitate the interpretation of burial context and living conditions, as well as elucidate past perceptions of biological sex and people with diverse biological traits.


Subject(s)
Down Syndrome , Klinefelter Syndrome , Male , Humans , Klinefelter Syndrome/diagnosis , Klinefelter Syndrome/genetics , DNA, Ancient , Aneuploidy , Sex Chromosomes
2.
Nat Commun ; 14(1): 2930, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253742

ABSTRACT

Extinct lineages of Yersinia pestis, the causative agent of the plague, have been identified in several individuals from Eurasia between 5000 and 2500 years before present (BP). One of these, termed the 'LNBA lineage' (Late Neolithic and Bronze Age), has been suggested to have spread into Europe with human groups expanding from the Eurasian steppe. Here, we show that the LNBA plague was spread to Europe's northwestern periphery by sequencing three Yersinia pestis genomes from Britain, all dating to ~4000 cal BP. Two individuals were from an unusual mass burial context in Charterhouse Warren, Somerset, and one individual was from a single burial under a ring cairn monument in Levens, Cumbria. To our knowledge, this represents the earliest evidence of LNBA plague in Britain documented to date. All three British Yersinia pestis genomes belong to a sublineage previously observed in Bronze Age individuals from Central Europe that had lost the putative virulence factor yapC. This sublineage is later found in Eastern Asia ~3200 cal BP. While the severity of the disease is currently unclear, the wide geographic distribution within a few centuries suggests substantial transmissibility.


Subject(s)
Plague , Yersinia pestis , Humans , Plague/epidemiology , Yersinia pestis/genetics , United Kingdom/epidemiology , Europe , Asia, Eastern
3.
PLoS Negl Trop Dis ; 16(4): e0010312, 2022 04.
Article in English | MEDLINE | ID: mdl-35446843

ABSTRACT

Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs.


Subject(s)
Diphyllobothrium , Helminthiasis , Helminths , Intestinal Diseases, Parasitic , Animals , Ascaris , Feces/parasitology , Helminthiasis/epidemiology , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Prevalence , United Kingdom/epidemiology
4.
PLoS Negl Trop Dis ; 14(8): e0008600, 2020 08.
Article in English | MEDLINE | ID: mdl-32853225

ABSTRACT

Helminth infections are among the World Health Organization's top neglected diseases with significant impact in many Less Economically Developed Countries. Despite no longer being endemic in Europe, the widespread presence of helminth eggs in archaeological deposits indicates that helminths represented a considerable burden in past European populations. Prevalence of infection is a key epidemiological feature that would influence the elimination of endemic intestinal helminths, for example, low prevalence rates may have made it easier to eliminate these infections in Europe without the use of modern anthelminthic drugs. To determine historical prevalence rates we analysed 589 grave samples from 7 European sites dated between 680 and 1700 CE, identifying two soil transmitted nematodes (Ascaris spp. and Trichuris trichiura) at all locations, and two food derived cestodes (Diphyllobothrium latum and Taenia spp.) at 4 sites. The rates of nematode infection in the medieval populations (1.5 to 25.6% for T. trichiura; 9.3-42.9% for Ascaris spp.) were comparable to those reported within modern endemically infected populations. There was some evidence of higher levels of nematode infection in younger individuals but not at all sites. The genetic diversity of T. trichiura ITS-1 in single graves was variable but much lower than with communal medieval latrine deposits. The prevalence of food derived cestodes was much lower (1.0-9.9%) than the prevalence of nematodes. Interestingly, sites that contained Taenia spp. eggs also contained D. latum which may reflect local culinary practices. These data demonstrate the importance of helminth infections in Medieval Europe and provide a baseline for studies on the epidemiology of infection in historical and modern contexts. Since the prevalence of medieval STH infections mirror those in modern endemic countries the factors affecting STH decline in Europe may also inform modern intervention campaigns.


Subject(s)
Helminthiasis/epidemiology , Intestines/parasitology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Anthelmintics/therapeutic use , Ascariasis/epidemiology , Ascariasis/transmission , Ascaris , Child , Child, Preschool , Europe/epidemiology , Female , Genetic Variation , Helminthiasis/drug therapy , Helminthiasis/transmission , Helminths/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , Neglected Diseases/epidemiology , Nematoda , Prevalence , Soil/parasitology , Toilet Facilities , Trichuriasis/epidemiology , Trichuriasis/transmission , Trichuris , Young Adult
5.
Microbiome ; 7(1): 102, 2019 07 06.
Article in English | MEDLINE | ID: mdl-31279340

ABSTRACT

BACKGROUND: Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plaque biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in microbial characteristics between the sample types have not yet been systematically explored. Here, we compare the microbial profiles of modern dental plaque, modern dental calculus, and historic dental calculus to establish expected differences between these substrates. RESULTS: Metagenomic data was generated from modern and historic calculus samples, and dental plaque metagenomic data was downloaded from the Human Microbiome Project. Microbial composition and functional profile were assessed. Metaproteomic data was obtained from a subset of historic calculus samples. Comparisons between microbial, protein, and metabolomic profiles revealed distinct taxonomic and metabolic functional profiles between plaque, modern calculus, and historic calculus, but not between calculus collected from healthy teeth and periodontal disease-affected teeth. Species co-exclusion was related to biofilm environment. Proteomic profiling revealed that healthy tooth samples contain low levels of bacterial virulence proteins and a robust innate immune response. Correlations between proteomic and metabolomic profiles suggest co-preservation of bacterial lipid membranes and membrane-associated proteins. CONCLUSIONS: Overall, we find that there are systematic microbial differences between plaque and calculus related to biofilm physiology, and recognizing these differences is important for accurate data interpretation in studies comparing dental plaque and calculus.


Subject(s)
Bacteria/classification , Bacterial Physiological Phenomena , Biofilms/growth & development , Dental Calculus/microbiology , Dental Plaque/microbiology , Microbiota/physiology , Tooth/microbiology , Bacterial Proteins/genetics , Bone and Bones/microbiology , DNA, Ancient/analysis , DNA, Bacterial/genetics , Dental Calculus/history , Female , History, Ancient , Humans , Male , Metagenomics , Periodontal Diseases/microbiology , Proteomics
6.
Metabolomics ; 13(11): 134, 2017.
Article in English | MEDLINE | ID: mdl-29046620

ABSTRACT

INTRODUCTION: Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens. OBJECTIVE: We present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach. METHODS: Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography-MS (GC-MS) and UPLC-MS/MS for further characterization of metabolites and lipids. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss. RESULTS: Dipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples. CONCLUSIONS: The results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies.

7.
Nat Commun ; 7: 10408, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26783965

ABSTRACT

British population history has been shaped by a series of immigrations, including the early Anglo-Saxon migrations after 400 CE. It remains an open question how these events affected the genetic composition of the current British population. Here, we present whole-genome sequences from 10 individuals excavated close to Cambridge in the East of England, ranging from the late Iron Age to the middle Anglo-Saxon period. By analysing shared rare variants with hundreds of modern samples from Britain and Europe, we estimate that on average the contemporary East English population derives 38% of its ancestry from Anglo-Saxon migrations. We gain further insight with a new method, rarecoal, which infers population history and identifies fine-scale genetic ancestry from rare variants. Using rarecoal we find that the Anglo-Saxon samples are closely related to modern Dutch and Danish populations, while the Iron Age samples share ancestors with multiple Northern European populations including Britain.


Subject(s)
Genome, Human/genetics , Archaeology , Emigration and Immigration , England , Genetics, Population , Humans , United Kingdom , White People
8.
Am J Phys Anthropol ; 154(4): 585-93, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24898314

ABSTRACT

High resolution incremental isotopic analysis of the dentine from early forming teeth, especially first molars (M1s), provides a means to assess the effects of poor childhood nutrition and healthcare on individuals in an assemblage where there are no infants to study. This approach is applied to an 18th and 19th century cemetery population associated with St Saviour's Almshouse burial ground in Southwark, London, to assess whether, or how, early dietary history, including weaning age, influenced health and nutritional status. The results show a general pattern in which non-breast milk foods were introduced before or by 6 months of age, as indicated by elevated δ(15) N during this period. Almost all individuals for which we also have second molar (M2) records, showed lower δ(15) N values from a very young age (>1 year) until approximately 8-10 years, compared to adult values. The overall results show a significant difference in δ(1) (3) C (p = 0 to 4sf, F = 17.327) and a weaker statistical difference in δ(15) N between males and females (p = 0.019, F = 5.581). One possible cause of this is a difference in the diet of males and females early in life, or alternatively, a greater susceptibility of males to nutritional deprivation compared to females. The latter argument is strengthened by a significant difference in the incidence of enamel hypoplasia between the males and females, with 7.7% of male teeth showing defects, compared to 3.9% of females.


Subject(s)
Carbon Isotopes/analysis , Dentin/chemistry , Nitrogen Isotopes/analysis , Tooth/chemistry , Adolescent , Adult , Anthropology, Physical , Child , Diet , Female , History, 18th Century , History, 19th Century , Humans , London/ethnology , Male , Middle Aged , Poverty , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...