Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37745561

ABSTRACT

Malignant testicular germ cells tumors (TGCTs) are the most common solid cancers in young men. Current TGCT diagnostics include conventional serum protein markers, but these lack the sensitivity and specificity to serve as accurate markers across all TGCT subtypes. MicroRNAs (miRNAs) are small non-coding regulatory RNAs and informative biomarkers for several diseases. In humans, miRNAs of the miR-371-373 cluster are detectable in the serum of patients with malignant TGCTs and outperform existing serum protein markers for both initial diagnosis and subsequent disease monitoring. We previously developed a genetically engineered mouse model featuring malignant mixed TGCTs consisting of pluripotent embryonal carcinoma (EC) and differentiated teratoma that, like the corresponding human malignancies, originate in utero and are highly chemosensitive. Here, we report that miRNAs in the mouse miR-290-295 cluster, homologs of the human miR-371-373 cluster, were detectable in serum from mice with malignant TGCTs but not from tumor-free control mice or mice with benign teratomas. miR-291-293 were expressed and secreted specifically by pluripotent EC cells, and expression was lost following differentiation induced by the drug thioridazine. Notably, miR-291-293 levels were significantly higher in the serum of pregnant dams carrying tumor-bearing fetuses compared to that of control dams. These findings reveal that expression of the miR-290-295 and miR-371-373 clusters in mice and humans, respectively, is a conserved feature of malignant TGCTs, further validating the mouse model as representative of the human disease. These data also highlight the potential of serum miR-371-373 assays to improve patient outcomes through early TGCT detection, possibly even prenatally.

2.
Stem Cell Reports ; 17(3): 507-521, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35148847

ABSTRACT

In vitro expansion of human primordial germ cell-like cells (hPGCLCs), a pluripotent stem cell-derived PGC model, has proved challenging due to rapid loss of primordial germ cell (PGC)-like identity and limited cell survival/proliferation. Here, we describe long-term culture hPGCLCs (LTC-hPGCLCs), which actively proliferate in a serum-free, feeder-free condition without apparent limit as highly homogeneous diploid cell populations maintaining transcriptomic and epigenomic characteristics of hPGCLCs. Histone proteomics confirmed reduced H3K9me2 and increased H3K27me3 marks in LTC-hPGCLCs compared with induced pluripotent stem cells (iPSCs). LTC-hPGCLCs established from multiple human iPSC clones of both sexes were telomerase positive, senescence-free cells readily passaged with minimal cell death or deviation from the PGC-like identity. LTC-hPGCLCs are capable of differentiating to DAZL-positive M-spermatogonia-like cells in the xenogeneic reconstituted testis (xrTestis) organ culture milieu as well as efficiently producing fully pluripotent embryonic germ cell-like cells in the presence of stem cell factor and fibroblast growth factor 2. Thus, LTC-hPGCLCs provide convenient access to unlimited amounts of high-quality and homogeneous hPGCLCs.


Subject(s)
Germ Cells , Induced Pluripotent Stem Cells , Cell Differentiation , Cells, Cultured , Feeder Cells , Female , Humans , Male
3.
Cancers (Basel) ; 13(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922599

ABSTRACT

Testicular germ cell tumors (TGCTs) are exceptionally sensitive to genotoxic chemotherapy, resulting in a high cure rate for the young men presenting with these malignancies. However, this treatment is associated with significant toxicity, and a subset of malignant TGCTs demonstrate chemoresistance. Mixed nonseminomas often contain pluripotent embryonal carcinoma (EC) cells, the cancer stem cells (CSCs) of these tumors. We hypothesized that differentiation therapy, a treatment strategy which aims to induce differentiation of tumor-propagating CSCs to slow tumor growth, could effectively treat mixed nonseminomas without significant toxicity. The FDA-approved antipsychotic thioridazine and the agricultural antibiotic salinomycin are two drugs previously found to selectively target CSCs, and here we report that these agents differentiate EC cells in vitro and greatly reduce their tumorigenic potential in vivo. Using a novel transformed induced pluripotent stem cell allograft model and a human xenograft model, we show that thioridazine extends the survival of tumor-bearing mice and can reduce the number of pluripotent EC cells within tumors. These results suggest that thioridazine could be repurposed as an alternative TGCT treatment that avoids the toxicity of conventional chemotherapeutics.

4.
Methods Mol Biol ; 2195: 147-165, 2021.
Article in English | MEDLINE | ID: mdl-32852763

ABSTRACT

Testicular germ cell tumors (TGCTs) are among the most curable solid cancers and are typically highly responsive to conventional DNA-damaging chemotherapies, even in patients with metastatic disease. It has therefore been of great interest to understand the basis for the unique chemosensitivity of these cancers, which is linked to the DNA damage sensitivity of their cancer stem cells. TGCTs have been difficult to study in the mouse, however, since most of the existing mouse models develop benign teratomas that are unlike the malignant TGCTs that afflict most testicular cancer patients. We describe here methods for generating a TGCT mouse model that closely resembles the malignant, metastatic disease observed in men with testicular cancer, and additionally include methods for analyzing the cancer stems cells and responses to chemotherapeutics in these murine TGCTs.


Subject(s)
Disease Models, Animal , Mice, Transgenic , Neoplasms, Germ Cell and Embryonal/etiology , Neoplasms, Germ Cell and Embryonal/pathology , Testicular Neoplasms/etiology , Testicular Neoplasms/pathology , Alleles , Animals , Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Breeding , Cell Line, Tumor , Genetic Engineering , Genotype , Humans , Male , Mice , Neoplasms, Germ Cell and Embryonal/drug therapy , Testicular Neoplasms/drug therapy , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...