Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
J Virol ; : e0068924, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39315814

ABSTRACT

The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes using a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify the infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately 1 month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers 6 months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. We provide an experimental protocol (dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others. IMPORTANCE: We describe a new approach that can rapidly measure how the antibodies in human serum inhibit infection by many different influenza strains. This new approach is useful for understanding how viral evolution affects antibody immunity. We apply the approach to study the effect of repeated influenza vaccination.

2.
Vaccine X ; 20: 100543, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39221180

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), rapidly spread across the globe in 2019. With the emergence of the Omicron variant, COVID-19 shifted into an endemic phase. Given the anticipated rise in cases during the fall and winter seasons, the strategy of implementing seasonal booster vaccines for COVID-19 is becoming increasingly valuable to protect public health. This practice already exists for seasonal influenza vaccines to combat annual influenza seasons. Our goal was to investigate an easily modifiable vaccine platform for seasonal use against SARS-CoV-2. In this study, we evaluated the genetically modified influenza virus ΔNA(RBD) as an intranasal vaccine candidate for COVID-19. This modified virus was engineered to replace the coding sequence for the neuraminidase (NA) protein with a membrane-anchored form of the receptor binding domain (RBD) protein of SARS-CoV-2. We designed experiments to assess the protection of ΔNA(RBD) in K18-hACE2 mice using lethal (Delta) and non-lethal (Omicron) challenge models. Controls of COVID-19 mRNA vaccine and our lab's previously described intranasal virus like particle vaccine were used as comparisons. Immunization with ΔNA(RBD) expressing ancestral RBD elicited high anti-RBD IgG levels in the serum of mice, high anti-RBD IgA in lung tissue, and improved survival after Delta variant challenge. Modifying ΔNA(RBD) to express Omicron variant RBD shifted variant-specific antibody responses and limited viral burden in the lungs of mice after Omicron variant challenge. Overall, this data suggests that ΔNA(RBD) could be an effective intranasal vaccine platform that generates mucosal and systemic immunity towards SARS-CoV-2.

3.
Cell Host Microbe ; 32(8): 1397-1411.e11, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39032493

ABSTRACT

Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population and how this heterogeneity affects virus evolution. Here, we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of two H3N2 strains, A/Hong Kong/45/2019 and A/Perth/16/2009, affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that were fixed in influenza variants after 2020 cause greater escape from sera from younger individuals compared with adults. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups and suggest approaches to understand how this heterogeneous selection shapes viral evolution.


Subject(s)
Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H3N2 Subtype , Influenza, Human , Mutation , Humans , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Adult , Antibodies, Viral/immunology , Antibodies, Viral/blood , Influenza, Human/virology , Influenza, Human/immunology , Age Factors , Middle Aged , Young Adult , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antigens, Viral/genetics , Antigens, Viral/immunology , Adolescent , Evolution, Molecular , Aged , Child
4.
J Biol Chem ; 300(5): 107280, 2024 May.
Article in English | MEDLINE | ID: mdl-38588810

ABSTRACT

Evolutionarily conserved structural folds can give rise to diverse biological functions, yet predicting atomic-scale interactions that contribute to the emergence of novel activities within such folds remains challenging. Pancreatic-type ribonucleases illustrate this complexity, sharing a core structure that has evolved to accommodate varied functions. In this study, we used ancestral sequence reconstruction to probe evolutionary and molecular determinants that distinguish biological activities within eosinophil members of the RNase 2/3 subfamily. Our investigation unveils functional, structural, and dynamical behaviors that differentiate the evolved ancestral ribonuclease (AncRNase) from its contemporary eosinophil RNase orthologs. Leveraging the potential of ancestral reconstruction for protein engineering, we used AncRNase predictions to design a minimal 4-residue variant that transforms human RNase 2 into a chimeric enzyme endowed with the antimicrobial and cytotoxic activities of RNase 3 members. This work provides unique insights into mutational and evolutionary pathways governing structure, function, and conformational states within the eosinophil RNase subfamily, offering potential for targeted modulation of RNase-associated functions.


Subject(s)
Eosinophils , Humans , Amino Acid Sequence , Eosinophils/metabolism , Eosinophils/enzymology , Evolution, Molecular , Ribonucleases/metabolism , Ribonucleases/chemistry , Ribonucleases/genetics , Animals , Macaca fascicularis , Phylogeny , Models, Molecular , Protein Structure, Tertiary
5.
bioRxiv ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38496577

ABSTRACT

The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we have developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes via a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately one month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals, and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers six months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. This study demonstrates the utility of high-throughput sequencing-based neutralization assays that enable titers to be simultaneously measured against many different viral strains. We provide a detailed experimental protocol (DOI: https://dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and a computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others.

6.
bioRxiv ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38168237

ABSTRACT

Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population, and how this heterogeneity affects virus evolution. Here we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of the A/Hong Kong/45/2019 (H3N2) and A/Perth/16/2009 (H3N2) strains affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that fixed in influenza variants after 2020 cause the greatest escape from sera from younger individuals. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups, and suggest approaches to understand how this heterogeneous selection shapes viral evolution.

7.
Viruses ; 14(9)2022 09 16.
Article in English | MEDLINE | ID: mdl-36146867

ABSTRACT

Neutralization assays are experimental surrogates for the effectiveness of infection- or vaccine-elicited polyclonal antibodies and therapeutic monoclonal antibodies targeting SARS-CoV-2. However, the measured neutralization can depend on the details of the experimental assay. Here, we systematically assess how ACE2 expression in target cells affects neutralization by antibodies to different spike epitopes in lentivirus pseudovirus neutralization assays. For high ACE2-expressing target cells, receptor-binding domain (RBD) antibodies account for nearly all neutralizing activity in polyclonal human sera. However, for lower ACE2-expressing target cells, antibodies targeting regions outside the RBD make a larger (although still modest) contribution to serum neutralization. These serum-level results are mirrored for monoclonal antibodies: N-terminal domain (NTD) antibodies and RBD antibodies that do not compete for ACE2 binding incompletely neutralize on high ACE2-expressing target cells, but completely neutralize on cells with lower ACE2 expression. Our results show that the ACE2 expression level in the target cells is an important experimental variable, and that high ACE2 expression emphasizes the role of a subset of RBD-directed antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Humans , Spike Glycoprotein, Coronavirus
8.
bioRxiv ; 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36093349

ABSTRACT

Neutralization assays are experimental surrogates for the effectiveness of infection- or vaccine-elicited polyclonal antibodies and therapeutic monoclonal antibodies targeting SARS-CoV-2. However, the measured neutralization can depend on details of the experimental assay. Here we systematically assess how ACE2 expression in target cells affects neutralization by antibodies to different spike epitopes in lentivirus pseudovirus neutralization assays. For high ACE2-expressing target cells, receptor binding domain (RBD) antibodies account for nearly all neutralizing activity in polyclonal human sera. But for lower ACE2-expressing target cells, antibodies targeting regions outside the RBD make a larger (although still modest) contribution to serum neutralization. These serum-level results are mirrored for monoclonal antibodies: N-terminal domain (NTD) antibodies and RBD antibodies that do not compete for ACE2 binding incompletely neutralize on high ACE2-expressing target cells, but completely neutralize on cells with lower ACE2 expression. Our results show that ACE2 expression level in the target cells is an important experimental variable, and that high ACE2 expression emphasizes the role of a subset of RBD-directed antibodies.

9.
Science ; 377(6604): 420-424, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35762884

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved variants with substitutions in the spike receptor-binding domain (RBD) that affect its affinity for angiotensin-converting enzyme 2 (ACE2) receptor and recognition by antibodies. These substitutions could also shape future evolution by modulating the effects of mutations at other sites-a phenomenon called epistasis. To investigate this possibility, we performed deep mutational scans to measure the effects on ACE2 binding of all single-amino acid mutations in the Wuhan-Hu-1, Alpha, Beta, Delta, and Eta variant RBDs. Some substitutions, most prominently Asn501→Tyr (N501Y), cause epistatic shifts in the effects of mutations at other sites. These epistatic shifts shape subsequent evolutionary change-for example, enabling many of the antibody-escape substitutions in the Omicron RBD. These epistatic shifts occur despite high conservation of the overall RBD structure. Our data shed light on RBD sequence-function relationships and facilitate interpretation of ongoing SARS-CoV-2 evolution.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Epistasis, Genetic , Evolution, Molecular , Receptors, Virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Humans , Mutation , Protein Binding , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
10.
PLoS Pathog ; 18(2): e1010248, 2022 02.
Article in English | MEDLINE | ID: mdl-35134084

ABSTRACT

Many SARS-CoV-2 variants have mutations at key sites targeted by antibodies. However, it is unknown if antibodies elicited by infection with these variants target the same or different regions of the viral spike as antibodies elicited by earlier viral isolates. Here we compare the specificities of polyclonal antibodies produced by humans infected with early 2020 isolates versus the B.1.351 variant of concern (also known as Beta or 20H/501Y.V2), which contains mutations in multiple key spike epitopes. The serum neutralizing activity of antibodies elicited by infection with both early 2020 viruses and B.1.351 is heavily focused on the spike receptor-binding domain (RBD). However, within the RBD, B.1.351-elicited antibodies are more focused on the "class 3" epitope spanning sites 443 to 452, and neutralization by these antibodies is notably less affected by mutations at residue 484. Our results show that SARS-CoV-2 variants can elicit polyclonal antibodies with different immunodominance hierarchies.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Epitopes/immunology , Humans , Immunization, Passive/methods , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
11.
J Immunother Cancer ; 9(10)2021 10.
Article in English | MEDLINE | ID: mdl-34702753

ABSTRACT

Recipients of chimeric antigen receptor-modified T (CAR-T) cell therapies for B cell malignancies have profound and prolonged immunodeficiencies and are at risk for serious infections, including respiratory virus infections. Vaccination may be important for infection prevention, but there are limited data on vaccine immunogenicity in this population. We conducted a prospective observational study of the humoral immunogenicity of commercially available 2019-2020 inactivated influenza vaccines in adults immediately prior to or while in durable remission after CD19-, CD20-, or B cell maturation antigen-targeted CAR-T-cell therapy, as well as controls. We tested for antibodies to all four vaccine strains using neutralization and hemagglutination inhibition (HAI) assays. Antibody responses were defined as at least fourfold titer increases from baseline. Seroprotection was defined as a HAI titer ≥40. Enrolled CAR-T-cell recipients were vaccinated 14-29 days prior to (n=5) or 13-57 months following therapy (n=13), and the majority had hypogammaglobulinemia and cellular immunodeficiencies prevaccination. Eight non-immunocompromised adults served as controls. Antibody responses to ≥1 vaccine strain occurred in 2 (40%) individuals before CAR-T-cell therapy and in 4 (31%) individuals vaccinated after CAR-T-cell therapy. An additional 1 (20%) and 6 (46%) individuals had at least twofold increases, respectively. One individual vaccinated prior to CAR-T-cell therapy maintained a response for >3 months following therapy. Across all tested vaccine strains, seroprotection was less frequent in CAR-T-cell recipients than in controls. There was evidence of immunogenicity even among individuals with low immunoglobulin, CD19+ B cell, and CD4+ T-cell counts. These data support consideration for vaccination before and after CAR-T-cell therapy for influenza and other relevant pathogens such as SARS-CoV-2, irrespective of hypogammaglobulinemia or B cell aplasia. However, relatively impaired humoral vaccine immunogenicity indicates the need for additional infection-prevention strategies. Larger studies are needed to refine our understanding of potential correlates of vaccine immunogenicity, and durability of immune responses, in CAR-T-cell therapy recipients.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Hemagglutination Inhibition Tests/methods , Immunogenicity, Vaccine/immunology , Influenza, Human/drug therapy , Influenza, Human/immunology , Adolescent , Adult , Aged , Humans , Middle Aged , Prospective Studies , Young Adult
12.
bioRxiv ; 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34671768

ABSTRACT

Many SARS-CoV-2 variants have mutations at key sites targeted by antibodies. However, it is unknown if antibodies elicited by infection with these variants target the same or different regions of the viral spike as antibodies elicited by earlier viral isolates. Here we compare the specificities of polyclonal antibodies produced by humans infected with early 2020 isolates versus the B.1.351 variant of concern (also known as Beta or 20H/501Y.V2), which contains mutations in multiple key spike epitopes. The serum neutralizing activity of antibodies elicited by infection with both early 2020 viruses and B.1.351 is heavily focused on the spike receptor-binding domain (RBD). However, within the RBD, B.1.351-elicited antibodies are more focused on the "class 3" epitope spanning sites 443 to 452, and neutralization by these antibodies is notably less affected by mutations at residue 484. Our results show that SARS-CoV-2 variants can elicit polyclonal antibodies with different immunodominance hierarchies.

13.
Sci Transl Med ; 13(600)2021 06 30.
Article in English | MEDLINE | ID: mdl-34103407

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with mutations in key antibody epitopes has raised concerns that antigenic evolution could erode adaptive immunity elicited by prior infection or vaccination. The susceptibility of immunity to viral evolution is shaped in part by the breadth of epitopes targeted by antibodies elicited by vaccination or natural infection. To investigate how human antibody responses to vaccines are influenced by viral mutations, we used deep mutational scanning to compare the specificity of polyclonal antibodies elicited by either two doses of the mRNA-1273 COVID-19 vaccine or natural infection with SARS-CoV-2. The neutralizing activity of vaccine-elicited antibodies was more targeted to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein compared to antibodies elicited by natural infection. However, within the RBD, binding of vaccine-elicited antibodies was more broadly distributed across epitopes compared to infection-elicited antibodies. This greater binding breadth means that single RBD mutations have less impact on neutralization by vaccine sera compared to convalescent sera. Therefore, antibody immunity acquired by natural infection or different modes of vaccination may have a differing susceptibility to erosion by SARS-CoV-2 evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive , RNA, Messenger , Spike Glycoprotein, Coronavirus , Vaccination , COVID-19 Serotherapy
14.
medRxiv ; 2021 May 11.
Article in English | MEDLINE | ID: mdl-34013294

ABSTRACT

Recipients of chimeric antigen receptor-modified T (CAR-T) cell therapies for B-cell malignancies are immunocompromised and at risk for serious infections. Vaccine immunogenicity is unknown in this population. We conducted a prospective observational study of the humoral immunogenicity of 2019-2020 inactivated influenza vaccines (IIV) in children and adults immediately prior to (n=7) or 13-57 months after (n=15) CD19-, CD20-, or BCMA-targeted CAR-T-cell therapy, as well as controls (n=8). Individuals post-CAR-T-cell therapy were in remission. We tested for antibodies to 4 vaccine strains at baseline and ≥1 time point after IIV using neutralization and hemagglutination inhibition assays. An antibody response was defined as a ≥4-fold titer increase from baseline at the first post-vaccine time point. Baseline A(H1N1) titers in the CAR-T cohorts were significantly lower compared to controls. Antibody responses to ≥1 vaccine strain occurred in 2 (29%) individuals before CAR-T-cell therapy; one individual maintained a response for >3 months post-CAR-T-cell therapy. Antibody responses to ≥1 vaccine strain occurred in 6 (40%) individuals vaccinated after CAR-T-cell therapy. An additional 2 (29%) and 6 (40%) individuals had ≥2-fold increases (at any time) in the pre- and post-CAR-T cohorts, respectively. There were no identified clinical or immunologic predictors of antibody responses. Neither severe hypogammaglobulinemia nor B-cell aplasia precluded antibody responses. These data support consideration for vaccination before and after CAR-T-cell therapy for influenza and other relevant pathogens such as SARS-CoV-2, irrespective of hypogammaglobulinemia or B-cell aplasia. Larger studies are needed to determine correlates of vaccine immunogenicity and durability in CAR-T-cell therapy recipients. KEY POINTS: Influenza vaccination was immunogenic pre- and post-CAR-T-cell therapy, despite hypogammaglobulinemia and B-cell aplasia.Vaccination with inactivated vaccines can be considered before CAR-T-cell therapy and in individuals with remission after therapy.

15.
bioRxiv ; 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33880474

ABSTRACT

The emergence of SARS-CoV-2 variants with mutations in key antibody epitopes has raised concerns that antigenic evolution will erode immunity. The susceptibility of immunity to viral evolution is shaped in part by the breadth of epitopes targeted. Here we compare the specificity of antibodies elicited by the mRNA-1273 vaccine versus natural infection. The neutralizing activity of vaccine-elicited antibodies is even more focused on the spike receptor-binding domain (RBD) than for infection-elicited antibodies. However, within the RBD, binding of vaccine-elicited antibodies is more broadly distributed across epitopes than for infection-elicited antibodies. This greater binding breadth means single RBD mutations have less impact on neutralization by vaccine sera than convalescent sera. Therefore, antibody immunity acquired by different means may have differing susceptibility to erosion by viral evolution. ONE SENTENCE SUMMARY: Deep mutational scanning shows the mRNA-1273 RBD-binding antibody response is less affected by single viral mutations than the infection response.

16.
Cell Host Microbe ; 29(3): 463-476.e6, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33592168

ABSTRACT

The evolution of SARS-CoV-2 could impair recognition of the virus by human antibody-mediated immunity. To facilitate prospective surveillance for such evolution, we map how convalescent plasma antibodies are impacted by all mutations to the spike's receptor-binding domain (RBD), the main target of plasma neutralizing activity. Binding by polyclonal plasma antibodies is affected by mutations in three main epitopes in the RBD, but longitudinal samples reveal that the impact of these mutations on antibody binding varies substantially both among individuals and within the same individual over time. Despite this inter- and intra-person heterogeneity, the mutations that most reduce antibody binding usually occur at just a few sites in the RBD's receptor-binding motif. The most important site is E484, where neutralization by some plasma is reduced >10-fold by several mutations, including one in the emerging 20H/501Y.V2 and 20J/501Y.V3 SARS-CoV-2 lineages. Going forward, these plasma escape maps can inform surveillance of SARS-CoV-2 evolution.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Binding Sites , Cell Line , Female , Humans , Male , Middle Aged , Mutation , Prospective Studies , Protein Binding , Protein Domains , Receptors, Virus/genetics , Receptors, Virus/immunology , Young Adult
17.
J Immunol ; 206(5): 1046-1057, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33472906

ABSTRACT

The zebrafish (Danio rerio) is a powerful model organism for studies of the innate immune system. One apparent difference between human and zebrafish innate immunity is the cellular machinery for LPS sensing. In amniotes, the protein complex formed by TLR4 and myeloid differentiation factor 2 (Tlr4/Md-2) recognizes the bacterial molecule LPS and triggers an inflammatory response. It is believed that zebrafish have neither Md-2 nor Tlr4; Md-2 has not been identified outside of amniotes, whereas the zebrafish tlr4 genes appear to be paralogs, not orthologs, of amniote TLR4s We revisited these conclusions. We identified a zebrafish gene encoding Md-2, ly96 Using single-cell RNA sequencing, we found that ly96 is transcribed in cells that also transcribe genes diagnostic for innate immune cells, including the zebrafish tlr4-like genes. In larval zebrafish, ly96 is expressed in a small number of macrophage-like cells. In a functional assay, zebrafish Md-2 and Tlr4ba form a complex that activates NF-κB signaling in response to LPS. In larval zebrafish ly96 loss-of-function mutations perturbed LPS-induced cytokine production but gave little protection against LPS toxicity. Finally, by analyzing the genomic context of tlr4 genes in 11 jawed vertebrates, we found that tlr4 arose prior to the divergence of teleosts and tetrapods. Thus, an LPS-sensitive Tlr4/Md-2 complex is likely an ancestral feature shared by mammals and zebrafish, rather than a de novo invention on the tetrapod lineage. We hypothesize that zebrafish retain an ancestral, low-sensitivity Tlr4/Md-2 complex that confers LPS responsiveness to a specific subset of innate immune cells.


Subject(s)
Lymphocyte Antigen 96/genetics , Toll-Like Receptor 4/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Cell Line , HEK293 Cells , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Inflammation/genetics , Inflammation/immunology , Lipopolysaccharides/immunology , Lymphocyte Antigen 96/immunology , Macrophages/immunology , Mammals/genetics , Mammals/immunology , Mice , NF-kappa B/genetics , NF-kappa B/immunology , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Zebrafish/immunology , Zebrafish Proteins/immunology
18.
Cell Host Microbe ; 29(1): 44-57.e9, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33259788

ABSTRACT

Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are being developed as therapeutics and are a major contributor to neutralizing antibody responses elicited by infection. Here, we describe a deep mutational scanning method to map how all amino-acid mutations in the RBD affect antibody binding and apply this method to 10 human monoclonal antibodies. The escape mutations cluster on several surfaces of the RBD that broadly correspond to structurally defined antibody epitopes. However, even antibodies targeting the same surface often have distinct escape mutations. The complete escape maps predict which mutations are selected during viral growth in the presence of single antibodies. They further enable the design of escape-resistant antibody cocktails-including cocktails of antibodies that compete for binding to the same RBD surface but have different escape mutations. Therefore, complete escape-mutation maps enable rational design of antibody therapeutics and assessment of the antigenic consequences of viral evolution.


Subject(s)
SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites , Epitopes/immunology , Gene Library , High-Throughput Nucleotide Sequencing , Humans , Protein Domains , SARS-CoV-2/genetics , Saccharomyces cerevisiae/genetics , Spike Glycoprotein, Coronavirus/chemistry
19.
bioRxiv ; 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32935107

ABSTRACT

Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are being developed as therapeutics and make a major contribution to the neutralizing antibody response elicited by infection. Here, we describe a deep mutational scanning method to map how all amino-acid mutations in the RBD affect antibody binding, and apply this method to 10 human monoclonal antibodies. The escape mutations cluster on several surfaces of the RBD that broadly correspond to structurally defined antibody epitopes. However, even antibodies targeting the same RBD surface often have distinct escape mutations. The complete escape maps predict which mutations are selected during viral growth in the presence of single antibodies, and enable us to design escape-resistant antibody cocktails-including cocktails of antibodies that compete for binding to the same surface of the RBD but have different escape mutations. Therefore, complete escape-mutation maps enable rational design of antibody therapeutics and assessment of the antigenic consequences of viral evolution.

20.
Viruses ; 12(9)2020 09 05.
Article in English | MEDLINE | ID: mdl-32899480

ABSTRACT

An effective vaccine is essential for controlling the spread of the SARS-CoV-2 virus. Here, we describe an influenza virus-based vaccine for SARS-CoV-2. We incorporated a membrane-anchored form of the SARS-CoV-2 spike receptor binding domain (RBD) in place of the neuraminidase (NA) coding sequence in an influenza virus also possessing a mutation that reduces the affinity of hemagglutinin for its sialic acid receptor. The resulting ΔNA(RBD)-Flu virus can be generated by reverse genetics and grown to high titers in cell culture. A single-dose intranasal inoculation of mice with ΔNA(RBD)-Flu elicits serum neutralizing antibody titers against SAR-CoV-2 comparable to those observed in humans following natural infection (~1:200). Furthermore, ΔNA(RBD)-Flu itself causes no apparent disease in mice. It might be possible to produce a vaccine similar to ΔNA(RBD)-Flu at scale by leveraging existing platforms for the production of influenza vaccines.


Subject(s)
Coronavirus Infections , Influenza Vaccines , Influenza, Human , Pandemics , Pneumonia, Viral , Pregnancy Complications, Infectious , Animals , Antibodies, Neutralizing , Antibodies, Viral , Betacoronavirus , COVID-19 , Chlamydia trachomatis , Fertility , Humans , Mice , Pregnancy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virion
SELECTION OF CITATIONS
SEARCH DETAIL