Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Protoc ; 18(7): 1981-2013, 2023 07.
Article in English | MEDLINE | ID: mdl-37344608

ABSTRACT

In image-based profiling, software extracts thousands of morphological features of cells from multi-channel fluorescence microscopy images, yielding single-cell profiles that can be used for basic research and drug discovery. Powerful applications have been proven, including clustering chemical and genetic perturbations on the basis of their similar morphological impact, identifying disease phenotypes by observing differences in profiles between healthy and diseased cells and predicting assay outcomes by using machine learning, among many others. Here, we provide an updated protocol for the most popular assay for image-based profiling, Cell Painting. Introduced in 2013, it uses six stains imaged in five channels and labels eight diverse components of the cell: DNA, cytoplasmic RNA, nucleoli, actin, Golgi apparatus, plasma membrane, endoplasmic reticulum and mitochondria. The original protocol was updated in 2016 on the basis of several years' experience running it at two sites, after optimizing it by visual stain quality. Here, we describe the work of the Joint Undertaking for Morphological Profiling Cell Painting Consortium, to improve upon the assay via quantitative optimization by measuring the assay's ability to detect morphological phenotypes and group similar perturbations together. The assay gives very robust outputs despite various changes to the protocol, and two vendors' dyes work equivalently well. We present Cell Painting version 3, in which some steps are simplified and several stain concentrations can be reduced, saving costs. Cell culture and image acquisition take 1-2 weeks for typically sized batches of ≤20 plates; feature extraction and data analysis take an additional 1-2 weeks.This protocol is an update to Nat. Protoc. 11, 1757-1774 (2016): https://doi.org/10.1038/nprot.2016.105.


Subject(s)
Cell Culture Techniques , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence , Mitochondria , Software
2.
Cell Syst ; 13(11): 911-923.e9, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36395727

ABSTRACT

Morphological and gene expression profiling can cost-effectively capture thousands of features in thousands of samples across perturbations by disease, mutation, or drug treatments, but it is unclear to what extent the two modalities capture overlapping versus complementary information. Here, using both the L1000 and Cell Painting assays to profile gene expression and cell morphology, respectively, we perturb human A549 lung cancer cells with 1,327 small molecules from the Drug Repurposing Hub across six doses, providing a data resource including dose-response data from both assays. The two assays capture both shared and complementary information for mapping cell state. Cell Painting profiles from compound perturbations are more reproducible and show more diversity but measure fewer distinct groups of features. Applying unsupervised and supervised methods to predict compound mechanisms of action (MOAs) and gene targets, we find that the two assays not only provide a partially shared but also a complementary view of drug mechanisms. Given the numerous applications of profiling in biology, our analyses provide guidance for planning experiments that profile cells for detecting distinct cell types, disease phenotypes, and response to chemical or genetic perturbations.


Subject(s)
Gene Expression Profiling , Humans , Gene Expression Profiling/methods , Phenotype
3.
Blood ; 136(11): 1303-1316, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32458004

ABSTRACT

Metabolic alterations in cancer represent convergent effects of oncogenic mutations. We hypothesized that a metabolism-restricted genetic screen, comparing normal primary mouse hematopoietic cells and their malignant counterparts in an ex vivo system mimicking the bone marrow microenvironment, would define distinctive vulnerabilities in acute myeloid leukemia (AML). Leukemic cells, but not their normal myeloid counterparts, depended on the aldehyde dehydrogenase 3a2 (Aldh3a2) enzyme that oxidizes long-chain aliphatic aldehydes to prevent cellular oxidative damage. Aldehydes are by-products of increased oxidative phosphorylation and nucleotide synthesis in cancer and are generated from lipid peroxides underlying the non-caspase-dependent form of cell death, ferroptosis. Leukemic cell dependence on Aldh3a2 was seen across multiple mouse and human myeloid leukemias. Aldh3a2 inhibition was synthetically lethal with glutathione peroxidase-4 (GPX4) inhibition; GPX4 inhibition is a known trigger of ferroptosis that by itself minimally affects AML cells. Inhibiting Aldh3a2 provides a therapeutic opportunity and a unique synthetic lethality to exploit the distinctive metabolic state of malignant cells.


Subject(s)
Aldehyde Oxidoreductases/physiology , Carbolines/pharmacology , Cyclohexylamines/pharmacology , Ferroptosis/drug effects , Hematopoiesis/physiology , Leukemia, Myeloid, Acute/enzymology , Neoplasm Proteins/physiology , Phenylenediamines/pharmacology , Aldehyde Oxidoreductases/genetics , Aldehydes/pharmacology , Animals , Cell Line, Tumor , Cytarabine/administration & dosage , Doxorubicin/administration & dosage , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Lipid Peroxidation , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/physiology , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Oleic Acid/pharmacology , Oncogene Proteins, Fusion/physiology , Oxidation-Reduction , Oxidative Stress , Phospholipid Hydroperoxide Glutathione Peroxidase/antagonists & inhibitors , Phospholipid Hydroperoxide Glutathione Peroxidase/physiology
4.
Biomaterials ; 137: 49-60, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28535442

ABSTRACT

Stem cells respond to the physicochemical parameters of the substrate on which they grow. Quantitative material activity relationships - the relationships between substrate parameters and the phenotypes they induce - have so far poorly predicted the success of bioactive implant surfaces. In this report, we screened a library of randomly selected designed surface topographies for those inducing osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell shape features, surface design parameters, and osteogenic marker expression were strongly correlated in vitro. Furthermore, the surfaces with the highest osteogenic potential in vitro also demonstrated their osteogenic effect in vivo: these indeed strongly enhanced bone bonding in a rabbit femur model. Our work shows that by giving stem cells specific physicochemical parameters through designed surface topographies, differentiation of these cells can be dictated.


Subject(s)
Bone Regeneration/physiology , Bone Substitutes , Computer Simulation , Osteogenesis/physiology , Tissue Scaffolds/chemistry , Animals , Cell Adhesion , Cell Proliferation , Cells, Cultured , Female , Humans , Mechanical Phenomena , Mesenchymal Stem Cells/physiology , Nanostructures , Rabbits , Surface Properties , Tissue Engineering/methods , Titanium/chemistry
5.
J Biomol Screen ; 21(9): 897-911, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27650791

ABSTRACT

Liver disease is a leading cause of morbidity worldwide and treatment options are limited, with organ transplantation being the only form of definitive management. Cell-based therapies have long held promise as alternatives to whole-organ transplantation but have been hindered by the rapid loss of liver-specific functions over a period of days in cultured hepatocytes. Hypothesis-driven studies have identified a handful of factors that modulate hepatocyte functions in vitro, but our understanding of the mechanisms involved remains incomplete. We thus report here the development of a high-throughput platform to enable systematic interrogation of liver biology in vitro. The platform is currently configured to enable genetic knockdown screens and includes an enzyme-linked immunosorbent assay-based functional assay to quantify albumin output as a surrogate marker for hepatocyte synthetic functions as well as an image-based viability assay that counts hepatocyte nuclei. Using this platform, we identified 12 gene products that may be important for hepatocyte viability and/or liver identity in vitro. These results represent important first steps in the elucidation of mechanisms instrumental to the phenotypic maintenance of hepatocytes in vitro, and we hope that the tools reported here will empower additional studies in various fields of liver research.


Subject(s)
Cell Culture Techniques/methods , Hepatocytes/cytology , High-Throughput Screening Assays/methods , Primary Cell Culture/methods , Humans , Liver/cytology
6.
Exp Eye Res ; 147: 50-56, 2016 06.
Article in English | MEDLINE | ID: mdl-27119563

ABSTRACT

A fully automated and robust method was developed to quantify ß-III-tubulin-stained retinal ganglion cells, combining computational recognition of individual cells by CellProfiler and a machine-learning tool to teach phenotypic classification of the retinal ganglion cells by CellProfiler Analyst. In animal models of glaucoma, quantification of immunolabeled retinal ganglion cells is currently performed manually and remains time-consuming. Using this automated method, quantifications of retinal ganglion cell images were accelerated tenfold: 1800 images were counted in 3 h using our automated method, while manual counting of the same images took 72 h. This new method was validated in an established murine model of microbead-induced optic neuropathy. The use of the publicly available software and the method's user-friendly design allows this technique to be easily implemented in any laboratory.


Subject(s)
Computational Biology/methods , Retinal Ganglion Cells/cytology , Animals , Cell Count/methods , Image Processing, Computer-Assisted , Immunohistochemistry , Mice , Regression Analysis , Software
7.
Cell Rep ; 14(3): 611-620, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26774481

ABSTRACT

Long-distance intracellular transport of organelles, mRNA, and proteins ("cargo") occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins, but the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naive Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels, and signaling proteins having a role in lysosome motility regulation and find an unexpected relationship between the dynein motor, Rab7a, and lysosome motility regulation.


Subject(s)
Drosophila Proteins/metabolism , Genome , Lysosomes/physiology , Microtubules/metabolism , Animals , Bayes Theorem , Cells, Cultured , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Dyneins/antagonists & inhibitors , Dyneins/genetics , Dyneins/metabolism , Phenotype , RNA Interference , RNA, Double-Stranded/metabolism , Time-Lapse Imaging , rab GTP-Binding Proteins/antagonists & inhibitors , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
8.
Methods ; 96: 6-11, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26687239

ABSTRACT

Biologists increasingly use co-culture systems in which two or more cell types are grown in cell culture together in order to better model cells' native microenvironments. Co-cultures are often required for cell survival or proliferation, or to maintain physiological functioning in vitro. Having two cell types co-exist in culture, however, poses several challenges, including difficulties distinguishing the two populations during analysis using automated image analysis algorithms. We previously analyzed co-cultured primary human hepatocytes and mouse fibroblasts in a high-throughput image-based chemical screen, using a combination of segmentation, measurement, and subsequent machine learning to score each cell as hepatocyte or fibroblast. While this approach was successful in counting hepatocytes for primary screening, segmentation of the fibroblast nuclei was less accurate. Here, we present an improved approach that more accurately identifies both cell types. Pixel-based machine learning (using the software ilastik) is used to seed segmentation of each cell type individually (using the software CellProfiler). This streamlined and accurate workflow can be carried out using freely available and open source software.


Subject(s)
Fibroblasts/ultrastructure , Hepatocytes/ultrastructure , High-Throughput Screening Assays , Machine Learning , Pattern Recognition, Automated , Phenotype , Algorithms , Animals , Cell Line , Cell Nucleus/ultrastructure , Cell Survival , Coculture Techniques , Humans , Image Processing, Computer-Assisted , Mice , Primary Cell Culture , Software
9.
PLoS One ; 9(3): e91744, 2014.
Article in English | MEDLINE | ID: mdl-24633176

ABSTRACT

The formation of synapses, the specialized points of chemical communication between neurons, is a highly regulated developmental process fundamental to establishing normal brain circuitry. Perturbations of synapse formation and function causally contribute to human developmental and degenerative neuropsychiatric disorders, such as Alzheimer's disease, intellectual disability, and autism spectrum disorders. Many genes controlling synaptogenesis have been identified, but lack of facile experimental systems has made systematic discovery of regulators of synaptogenesis challenging. Thus, we created a high-throughput platform to study excitatory and inhibitory synapse development in primary neuronal cultures and used a lentiviral RNA interference library to identify novel regulators of synapse formation. This methodology is broadly applicable for high-throughput screening of genes and drugs that may rescue or improve synaptic dysfunction associated with cognitive function and neurological disorders.


Subject(s)
High-Throughput Screening Assays , Microscopy, Fluorescence , Neurons/metabolism , RNA Interference , Synapses/metabolism , Algorithms , Animals , Automation, Laboratory , Gene Expression Regulation , Mice , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
10.
Nat Chem Biol ; 9(12): 840-848, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24161946

ABSTRACT

Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Leukemia , Neoplastic Stem Cells/drug effects , Cell Line, Tumor , Hematopoietic Stem Cells , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lovastatin/pharmacology , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/physiology
11.
Cell Host Microbe ; 14(1): 104-15, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23870318

ABSTRACT

The Plasmodium liver stage is an attractive target for the development of antimalarial drugs and vaccines, as it provides an opportunity to interrupt the life cycle of the parasite at a critical early stage. However, targeting the liver stage has been difficult. Undoubtedly, a major barrier has been the lack of robust, reliable, and reproducible in vitro liver-stage cultures. Here, we establish the liver stages for both Plasmodium falciparum and Plasmodium vivax in a microscale human liver platform composed of cryopreserved, micropatterned human primary hepatocytes surrounded by supportive stromal cells. Using this system, we have successfully recapitulated the full liver stage of P. falciparum, including the release of infected merozoites and infection of overlaid erythrocytes, as well as the establishment of small forms in late liver stages of P. vivax. Finally, we validate the potential of this platform as a tool for medium-throughput antimalarial drug screening and vaccine development.


Subject(s)
Hepatocytes/parasitology , Liver/cytology , Malaria/parasitology , Parasitology/methods , Plasmodium falciparum/growth & development , Plasmodium vivax/growth & development , Animals , Antimalarials/pharmacology , Cells, Cultured , Drug Evaluation, Preclinical , Hepatocytes/cytology , Humans , Life Cycle Stages , Liver/parasitology , Malaria/drug therapy , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects
12.
Nat Chem Biol ; 9(8): 514-20, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23728495

ABSTRACT

Cell-based therapies hold the potential to alleviate the growing burden of liver diseases. Such therapies require human hepatocytes, which, within the stromal context of the liver, are capable of many rounds of replication. However, this ability is lost ex vivo, and human hepatocyte sourcing has limited many fields of research for decades. Here we developed a high-throughput screening platform for primary human hepatocytes to identify small molecules in two different classes that can be used to generate renewable sources of functional human hepatocytes. The first class induced functional proliferation of primary human hepatocytes in vitro. The second class enhanced hepatocyte functions and promoted the differentiation of induced pluripotent stem cell-derived hepatocytes toward a more mature phenotype than what was previously obtainable. The identification of these small molecules can help address a major challenge affecting many facets of liver research and may lead to the development of new therapeutics for liver diseases.


Subject(s)
Hepatocytes/cytology , Hepatocytes/drug effects , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Small Molecule Libraries/pharmacology , Cell Differentiation/drug effects , Cell Proliferation , Dose-Response Relationship, Drug , High-Throughput Screening Assays , Humans , Molecular Structure , Small Molecule Libraries/chemistry , Structure-Activity Relationship
13.
PLoS One ; 7(3): e33755, 2012.
Article in English | MEDLINE | ID: mdl-22479437

ABSTRACT

The cellular content of mitochondria changes dynamically during development and in response to external stimuli, but the underlying mechanisms remain obscure. To systematically identify molecular probes and pathways that control mitochondrial abundance, we developed a high-throughput imaging assay that tracks both the per cell mitochondrial content and the cell size in confluent human umbilical vein endothelial cells. We screened 28,786 small molecules and observed that hundreds of small molecules are capable of increasing or decreasing the cellular content of mitochondria in a manner proportionate to cell size, revealing stereotyped control of these parameters. However, only a handful of compounds dissociate this relationship. We focus on one such compound, BRD6897, and demonstrate through secondary assays that it increases the cellular content of mitochondria as evidenced by fluorescence microscopy, mitochondrial protein content, and respiration, even after rigorous correction for cell size, cell volume, or total protein content. BRD6897 increases uncoupled respiration 1.6-fold in two different, non-dividing cell types. Based on electron microscopy, BRD6897 does not alter the percent of cytoplasmic area occupied by mitochondria, but instead, induces a striking increase in the electron density of existing mitochondria. The mechanism is independent of known transcriptional programs and is likely to be related to a blockade in the turnover of mitochondrial proteins. At present the molecular target of BRD6897 remains to be elucidated, but if identified, could reveal an important additional mechanism that governs mitochondrial biogenesis and turnover.


Subject(s)
Cell Size , Human Umbilical Vein Endothelial Cells/chemistry , Human Umbilical Vein Endothelial Cells/cytology , Mitochondria/chemistry , Animals , Cell Line , Cell Size/drug effects , Cells, Cultured , High-Throughput Screening Assays , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Mice , Mitochondria/drug effects , Mitochondria/ultrastructure , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
14.
Bioinformatics ; 27(8): 1179-80, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21349861

ABSTRACT

UNLABELLED: There is a strong and growing need in the biology research community for accurate, automated image analysis. Here, we describe CellProfiler 2.0, which has been engineered to meet the needs of its growing user base. It is more robust and user friendly, with new algorithms and features to facilitate high-throughput work. ImageJ plugins can now be run within a CellProfiler pipeline. AVAILABILITY AND IMPLEMENTATION: CellProfiler 2.0 is free and open source, available at http://www.cellprofiler.org under the GPL v. 2 license. It is available as a packaged application for Macintosh OS X and Microsoft Windows and can be compiled for Linux. CONTACT: anne@broadinstitute.org SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Image Processing, Computer-Assisted/methods , Software , Algorithms , High-Throughput Screening Assays , Neurons/ultrastructure
15.
J Biomol Screen ; 15(7): 840-6, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20516293

ABSTRACT

The typical "design" approach to image-based assay development involves choosing measurements that are likely to correlate with the phenotype of interest, based on the researcher's intuition and knowledge of image analysis. An alternate "screening" approach is to measure a large number of cellular features and systematically test each feature to identify those that are best able to distinguish positive and negative controls while taking precautions to avoid overfitting the available data. The cell measurement software the authors previously developed, CellProfiler, makes both approaches straightforward, easing the process of assay development. Here, they demonstrate the use of the screening approach to image assay development to select the best measures for scoring publicly available image sets of 2 cytoplasm-to-nucleus translocation assays and 2 Transfluor assays. The authors present the resulting assay quality measures as a baseline for future algorithm comparisons, and all software, methods, and images they present are freely available.


Subject(s)
Biological Assay/methods , Image Processing, Computer-Assisted/methods , Biological Transport , Cell Line, Tumor , Cell Nucleus/metabolism , Fluorescence , Humans
16.
Am J Pathol ; 177(2): 575-85, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20566748

ABSTRACT

Postmortem, genetic, brain imaging, and peripheral cell studies all support decreased mitochondrial activity as a factor in the manifestation of Bipolar Disorder (BD). Because abnormal mitochondrial morphology is often linked to altered energy metabolism, we investigated whether changes in mitochondrial structure were present in brain and peripheral cells of patients with BD. Mitochondria from patients with BD exhibited size and distributional abnormalities compared with psychiatrically-healthy age-matched controls. Specifically, in brain, individual mitochondria profiles had significantly smaller areas, on average, in BD samples (P = 0.03). In peripheral cells, mitochondria in BD samples were concentrated proportionately more within the perinuclear region than in distal processes (P = 0.0008). These mitochondrial changes did not appear to be correlated with exposure to lithium. Also, these abnormalities in brain and peripheral cells were independent of substantial changes in the actin or tubulin cytoskeleton with which mitochondria interact. The observed changes in mitochondrial size and distribution may be linked to energy deficits and, therefore, may have consequences for cell plasticity, resilience, and survival in patients with BD, especially in brain, which has a high-energy requirement. The findings may have implications for diagnosis, if they are specific to BD, and for treatment, if they provide clues as to the underlying pathophysiology of BD.


Subject(s)
Bipolar Disorder/pathology , Mitochondria/pathology , Prefrontal Cortex , Adenosine Triphosphate/metabolism , Adult , Aged , Aged, 80 and over , Antidepressive Agents/pharmacology , Cell Line , Cytochromes c/metabolism , Cytoskeleton/ultrastructure , Energy Metabolism , Female , Fibroblasts/drug effects , Fibroblasts/ultrastructure , Humans , Lithium Carbonate/pharmacology , Male , Middle Aged , Mitochondria/ultrastructure , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Young Adult
17.
Cereb Cortex ; 16(10): 1494-507, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16339087

ABSTRACT

As arboreal primates move through the jungle, they are immersed in visual motion that they must distinguish from the movement of predators and prey. We recorded dorsal medial superior temporal (MSTd) cortical neuronal responses to visual motion stimuli simulating self-movement and object motion. MSTd neurons encode the heading of simulated self-movement in three-dimensional (3-D) space. 3-D heading responses can be evoked either by the large patterns of visual motion in optic flow or by the visual object motion seen when an observer passes an earth-fixed landmark. Responses to naturalistically combined optic flow and object motion depend on their relative directions: an object moving as part of the optic flow field has little effect on neuronal responses. In contrast, an object moving separately from the optic flow field has large effects, decreasing the amplitude of the population response and shifting the population's heading estimate to match the direction of object motion as the object moves toward central vision. These effects parallel those seen in human heading perception with minimal effects of objects moving with the optic flow and substantial effects of objects violating the optic flow. We conclude that MSTd can contribute to navigation by supporting 3-D heading estimation, potentially switching from optic flow to object cues when a moving object passes in front of the observer.


Subject(s)
Motion Perception/physiology , Movement/physiology , Orientation/physiology , Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Animals , Body Image , Cues , Female , Macaca mulatta , Male , Photic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...