Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(6): 2055-2061, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38332811

ABSTRACT

Electrochemiluminescence (ECL) is evolving rapidly from a purely analytical technique into a powerful microscopy. Herein, we report the imaging of single cells by photoinduced ECL (PECL; λem = 620 nm) stimulated by an incident near-infrared light (λexc = 1050 nm). The cells were grown on a metal-insulator-semiconductor (MIS) n-Si/SiOx/Ir photoanode that exhibited stable and bright PECL emission. The large anti-Stokes shift allowed for the recording of well-resolved images of cells with high sensitivity. PECL microscopy is demonstrated at a remarkably low onset potential of 0.8 V; this contrasts with classic ECL, which is blind at this potential. Two imaging modes are reported: (i) photoinduced positive ECL (PECL+), showing the cell membranes labeled with the [Ru(bpy)3]2+ complex; and (ii) photoinduced shadow label-free ECL (PECL-) of cell morphology, with the luminophore in the solution. Finally, by adding a new dimension with the near-infrared light stimulus, PECL microscopy should find promising applications to image and study single photoactive nanoparticles and biological entities.

2.
ACS Appl Mater Interfaces ; 16(9): 11722-11729, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38393292

ABSTRACT

Infrared (IR) imaging devices that convert IR irradiation (invisible to the human eye) to a visible signal are based on solid-state components. Here, we introduce an alternative concept based on light-addressable electrochemistry (i.e., electrochemistry spatially confined under the action of a light stimulus) that involves the use of a liquid electrolyte. In this method, the projection of a near-IR image (λexc = 850 or 840 nm) onto a photoactive Si-based photoanode, immersed into a liquid phase, triggers locally the photoinduced electrochemiluminescence (PECL) of the efficient [Ru(bpy)3]2+-TPrA system. This leads to the local conversion of near-IR light to visible (λPECL = 632 nm) light. We demonstrate that compared to planar Si photoanodes, the use of a micropillar Si array leads to a large enhancement of local light generation and considerably improves the resolution of the PECL image by preventing photogenerated minority carriers from diffusing laterally. These results are important for the design of original light conversion devices and can lead to important applications in photothermal imaging and analytical chemistry.

3.
Small ; 20(14): e2308023, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37988641

ABSTRACT

Electrochemiluminescence (ECL) is the generation of light induced by an electrochemical reaction, driven by electricity. Here, an all-optical ECL (AO-ECL) system is developped, which triggers ECL by the illumination of electrically autonomous "integrated" photoelectrochemical devices immersed in the electrolyte. Because these systems are made using small and cheap devices, they can be easily prepared and readily used by any laboratories. They are based on commercially available p-i-n Si photodiodes (≈1 € unit-1), coupled with well-established ECL-active and catalytic materials, directly coated onto the component leads by simple and fast wet processes. Here, a Pt coating (known for its high activity for reduction reactions) and carbon paint (known for its optimal ECL emission properties) are deposited at cathode and anode leads, respectively. In addition to its optimized light absorption properties, using the commercial p-i-n Si photodiode eliminates the need for a complicated manufacturing process. It is shown that the device can emit AO-ECL by illumination with polychromatic (simulated sunlight) or monochromatic (near IR) light sources to produce visible photons (425 nm) that can be easily observed by the naked eye or recorded with a smartphone camera. These low-cost off-grid AO-ECL devices open broad opportunities for remote photodetection and portable bioanalytical tools.

4.
J Phys Chem Lett ; 15(1): 148-155, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38149790

ABSTRACT

Pt/InGa/n-Si/SiOx/Pt devices were prepared by using standard chemical and sputtering processes. These systems are diodes comprising a frontside photoactive metal-insulator-semiconductor (MIS) n-Si/SiOx/Pt junction and a backside Pt/InGa/n-Si Ohmic contact. Pt/InGa/n-Si/SiOx/Pt was first characterized by dark-solid-state electrical and impedance measurements. Then, each side of the device was investigated by electrochemical means in the dark and under near-IR illumination at 850 nm in the luminol-H2O2 electrochemiluminescence (ECL) electrolyte. The results suggested the possibility of triggering an all-optical ECL (AO-ECL) at Pt/InGa/n-Si/SiOx/Pt. This was confirmed by studying AO-ECL at the monolithic, all-integrated Pt/InGa/n-Si/SiOx/Pt device, immersed in the ECL electrolyte. The conversion process can occur with good stability and the intensity of the visible emission (440 nm) depends on tunable parameters such as the illumination power density, O2 concentration, or the concentration of added H2O2. These results are important for the next developments of AO-ECL in sensing and microscopy.

5.
Chem Commun (Camb) ; 59(82): 12262-12265, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37753612

ABSTRACT

Localized photoinduced electrochemiluminescence (PECL) is studied on photoanodes composed of Ir microbands deposited on n-Si/SiOx. We demonstrate that PECL microscopy precisely imaged the hole-driven heterogeneous photoelectrochemical reactivity. The method is promising for elucidating the local activity of photoelectrodes that are employed in solar energy conversion.

6.
J Am Chem Soc ; 145(31): 17420-17426, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37498003

ABSTRACT

Electrochemiluminescence (ECL) is widely employed for medical diagnosis and imaging. Despite its remarkable analytical performances, the technique remains intrinsically limited by the essential need for an external power supply and electrical wires for electrode connections. Here, we report an electrically autonomous solution leading to a paradigm change by designing a fully integrated all-optical wireless monolithic photoelectrochemical device based on a nanostructured Si photovoltaic junction modified with catalytic coatings. Under illumination with light ranging from visible to near-infrared, photogenerated holes induce the oxidation of the ECL reagents and thus the emission of visible ECL photons. The blue ECL emission is easily viewed with naked eyes and recorded with a smartphone. A new light emission scheme is thus introduced where the ECL emission energy (2.82 eV) is higher than the excitation energy (1.18 eV) via an intermediate electrochemical process. In addition, the mapping of the photoelectrochemical activity by optical microscopy reveals the minority carrier interfacial transfer mechanism at the nanoscale. This breakthrough provides an all-optical strategy for generalizing ECL without the need for electrochemical setups, electrodes, wiring constraints, and specific electrochemical knowledge. This simplest ECL configuration reported so far opens new opportunities to develop imaging and wireless bioanalytical systems such as portable point-of-care sensing devices.

7.
J Phys Chem Lett ; 13(24): 5538-5544, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35695813

ABSTRACT

Wireless electrochemical systems constitute a rapidly developing field. Herein, photoinduced electrochemiluminescence (PECL) is studied at Si-based closed bipolar electrodes (BPEs) for designing anti-Stokes systems that can convert IR into visible photons, without direct electrical contact. We show that protection of the anodic emitting pole of the BPE allows the triggering of bright and longstanding emission under the synergetic actions of an external bias and IR illumination. Photoactive n- and p-type Si BPEs are studied with front-side and back-side illumination, respectively, and nonphotoactive n+-Si BPEs are studied in the dark. Two electrochemiluminescent (ECL) systems ([Ru(bpy)3]2+/TPrA and L-012) are tested, and we show that the onset bias and the anti-Stokes shift can be controlled by the ECL system that is employed. These advances, rationalized by simulations, will be useful for the design of original PECL systems for chemical sensing or photodetection.

8.
Chem Commun (Camb) ; 58(47): 6686-6688, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35621023

ABSTRACT

Anti-Stokes photoinduced electrochemiluminescence (PECL) converts infrared photons to visible photons and is usually triggered at a narrow band gap-protected photoanode. Here, we report the first example of PECL with the model [Ru(bpy)3]2+/benzoyl peroxide system at a bare p-type Si photocathode. The reported PECL system, which allows a notable decrease of the cathodic potential required for ECL generation, should open new opportunities for imaging and light-addressable devices.

9.
Angew Chem Int Ed Engl ; 61(20): e202201865, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35233901

ABSTRACT

Photoinduced electrochemiluminescence (PECL) allows the electrochemically assisted conversion of low-energy photons into high-energy photons at an electrode surface. This concept is expected to have important implications, however, it is dramatically limited by the stability of the surface, impeding future developments. Here, a series of metal-insulator-semiconductor (MIS) junctions, using photoactive n-type Si (n-Si) as a light absorber covered by a few-nanometer-thick protective SiOx /metal (SiOx /M, with M=Ru, Pt, and Ir) overlayers are investigated for upconversion PECL of the model co-reactant system involving the simultaneous oxidation of tris(bipyridine)ruthenium(II) and tri-n-propylamine. We show that n-Si/SiOx /Pt and n-Si/SiOx /Ir exhibit high photovoltages and record stabilities in operation (35 h for n-Si/SiOx /Ir) for the generation of intense PECL with an anti-Stokes shift of 218 nm. We also demonstrate that these surfaces can be employed for spatially localized PECL. These unprecedented performances are extremely promising for future applications of PECL.

10.
Chem Sci ; 13(9): 2528-2550, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35356679

ABSTRACT

Electrochemiluminescence (ECL) is the light production triggered by reactions at the electrode surface. Its intrinsic features based on a dual electrochemical/photophysical nature have made it an attractive and powerful method across diverse fields in applied and fundamental research. Herein, we review the combination of ECL with semiconductor (SC) materials presenting various typical dimensions and structures, which has opened new uses of ECL and offered exciting opportunities for (bio)sensing and imaging. In particular, we highlight this particularly rich domain at the interface between photoelectrochemistry, SC material chemistry and analytical chemistry. After an introduction to the ECL and SC fundamentals, we gather the recent advances with representative examples of new strategies to generate ECL in original configurations. Indeed, bulk SC can be used as electrode materials with unusual ECL properties or light-addressable systems. At the nanoscale, the SC nanocrystals or quantum dots (QDs) constitute excellent bright ECL nano-emitters with tuneable emission wavelengths and remarkable stability. Finally, the challenges and future prospects are discussed for the design of new detection strategies in (bio)analytical chemistry, light-addressable systems, imaging or infrared devices.

11.
Adv Sci (Weinh) ; 9(2): e2101661, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34766476

ABSTRACT

Hybrid materials taking advantage of the different physical properties of materials are highly attractive for numerous applications in today's science and technology. Here, it is demonstrated that epitaxial bi-domain III-V/Si are hybrid structures, composed of bulk photo-active semiconductors with 2D topological semi-metallic vertical inclusions, endowed with ambipolar properties. By combining structural, transport, and photoelectrochemical characterizations with first-principle calculations, it is shown that the bi-domain III-V/Si materials are able within the same layer to absorb light efficiently, separate laterally the photo-generated carriers, transfer them to semimetal singularities, and ease extraction of both electrons and holes vertically, leading to efficient carrier collection. Besides, the original topological properties of the 2D semi-metallic inclusions are also discussed. This comb-like heterostructure not only merges the superior optical properties of semiconductors with good transport properties of metallic materials, but also combines the high efficiency and tunability afforded by III-V inorganic bulk materials with the flexible management of nano-scale charge carriers usually offered by blends of organic materials. Physical properties of these novel hybrid heterostructures can be of great interest for energy harvesting, photonic, electronic or computing devices.

12.
Nanoscale ; 13(3): 1997-2004, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33443521

ABSTRACT

Photoelectrochemical water splitting under harsh chemical conditions can be promoted by dispersed transition metal nanoparticles electrodeposited on n-Si surfaces, without the need for classical protection layers. Although this method is simple, it only allows for poor control of metal morphology and geometry on the photoanode surface. Herein, we introduce templated nanoscale electrodeposition on photoactive n-Si for the customization of nanoscale inhomogeneous Schottky junctions and demonstrate their use as stable photoanodes. The photoelectrochemical properties of the so-manufactured photoanodes exhibit a strong dependence on the photoanodes' geometrical features, and the obtained experimental trends are rationalized using simulation.

13.
Angew Chem Int Ed Engl ; 59(35): 15157-15160, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32343476

ABSTRACT

Photoinduced electrochemiluminescence (PECL) combines semiconductor (SC) photoelectrochemistry with electrochemiluminescence (ECL). In PECL, the incident light is converted into a different wavelength by an electrochemical reaction at a SC photoelectrode and allows triggering of ECL at low potentials. This concept has been employed to design up-conversion systems. However, PECL strongly suffers from the photoelectrochemical instability of these low band gap SCs. Reported here for the first time is an original light-conversion strategy based on PECL of a luminol derivative (L-012) at BiVO4 photoanodes in water. Incident light photoexcites simultaneously the L-012 fluorescence and the photoanode. However, the resulting signal is surpassed by the PECL emission. PECL can be induced at a potential as low as -0.4 V for several hours and can be employed to finely tune L-012 luminescence. This finding is promising for the design of new analytical strategies and light-addressable systems.

14.
J Am Chem Soc ; 141(33): 13013-13016, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31373805

ABSTRACT

We introduce the photoinduced electrochemiluminescence (P-ECL) of the model ECL system involving the simultaneous oxidation of [Ru(bpy)3]2+ and tri-n-propylamine (TPrA). This system classically requires highly anodic potentials of greater than +1 V vs SCE for ECL generation. In the reported approach, the ECL emission is triggered by holes (h+) photogenerated in an n-type semiconductor (SC) electrode, which is normally highly challenging because of competing photocorrosion occurring on SC electrodes in aqueous electrolytes. We employ here Si-based tunnel electrodes protected by few-nanometer-thick SiOx and Ni stabilizing thin films and demonstrate that this construct allows generation of P-ECL in water. This system is based on an upconversion process where light absorption at 810 nm induces ECL emission (635 nm) at a record low electrochemical potential of 0.5 V vs SCE. Neither this excitation wavelength nor this low applied potential is able to stimulate ECL light if applied alone, but their synergetic action leads to stable and intense ECL emission in water. This P-ECL strategy can be extended to other luminophores and is promising for ultrasensitive detection and light-addressable and imaging devices.

15.
J Am Chem Soc ; 141(30): 11954-11962, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31241321

ABSTRACT

Molecular engineering of efficient HER catalysts is an attractive approach for controlling the spatial environment of specific building units selected for their intrinsic functionality required within the multistep HER process. As the {Mo3S4} core derived as various coordination complexes has been identified as one as the most promising MoSx-based HER electrocatalysts, we demonstrate that the covalent association between the {Mo3S4} core and the redox-active macrocyclic {P8W48} polyoxometalate (POM) produces a striking synergistic effect featured by high HER performance. Various experiments carried out in homogeneous conditions showed that this synergistic effect arises from the direct connection between the {Mo3S4} cluster and the toroidal {P8W48} units featured by a stoichiometry that can be tuned from two to four {Mo3S4} cores per {P8W48} unit. In addition, we report that this effect is preserved within heterogeneous photoelectrochemical devices where the {Mo3S4}-{P8W48} (thio-POM) assembly was used as cocatalyst (cocat) onto a microstructured p-type silicon. Using a drop-casting procedure to immobilize cocat onto the silicon interface led to high initial HER performance under simulated sunlight, achieving a photocurrent density of 10 mA cm-2 at +0.13 V vs RHE. Furthermore, electrostatic incorporation of the thio-POM anion cocat into a poly(3,4-ethylenedioxythiophene) (PEDOT) film is demonstrated to be efficient and straightforward to durably retain the cocat at the interface of a micropyramidal silicon (SimPy) photocathode. The thio-POM/PEDOT-modified photocathode is able to produce H2 under 1 Sun illumination at a rate of ca. 100 µmol cm-2 h-1 at 0 V vs RHE, highlighting the excellent performance of this photoelectrochemical system.

16.
ACS Omega ; 3(10): 13837-13849, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-31458082

ABSTRACT

Silicon photocathodes coated with drop-casted {Mo3S4}-based polyoxothiometalate assemblies are demonstrated to be effective for sunlight-driven hydrogen evolution reaction (HER) in acid conditions. These photocathodes are catalytically more efficient than that coated with the parent thiomolybdate incorporating an organic ligand, as supported by a higher onset potential and a lower overvoltage at 10 mA cm-2. At pH 7.3, the trend is inversed and the beneficial effect of the polyoxometalate for the HER is not observed. Moreover, the polyoxothiometalate-modified photocathode is found to be also more stable under acid conditions and can be operated at the light-limited catalytic current for more than 40 h. Furthermore, X-ray photoelectron spectroscopy and atomic force microscopy measurements indicate that the cathodic polarization of both photocathodes leads to the release of a large amount of the deposited material into the electrolyte solution concomitantly with the formation of mixed valence species {Mo(IV)3-x Mo(III) x O4-n S n }(4-x)+ resulting from the replacement of S2- sulfido ligands in the cluster by oxo O2- groups; these combined effects are shown to be beneficial for the photoelectrocatalysis.

17.
J Phys Chem Lett ; 8(19): 4930-4934, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28945095

ABSTRACT

Bipolar electrochemistry has been shown to enable and control various kinds of propulsion of nonwired conducting objects: translation, rotation, and levitation. There is a very rapid development in the field of controlled motion combined with other functionalities. Here we integrate two different concepts in one system to generate wireless electrochemical motion of a specifically designed rotor and track its polarization simultaneously by electrochemical light emission. Locally produced hydrogen bubbles at the cathodic pole of the bipolar rotor are the driving force of the motion, whereas [Ru(bpy)3]Cl2 and tripropylamine react at the anodic extremity, thus generating an electrochemiluminescence signal with an intensity directly correlated with the orientation of the rotor arms. This allows in a straightforward way the qualitative visualization of the changing interfacial potential differences during rotation and shows for the first time that light emission can be coupled to autonomously rotating bipolar electrodes.

18.
Langmuir ; 32(45): 11728-11735, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27779889

ABSTRACT

The electroless deposition of Pt nanoparticles (NPs) on hydrogen-terminated silicon (H-Si) surfaces is studied as a function of the temperature and the immersion time. It is demonstrated that isolated Pt structures can be produced at all investigated temperatures (between 22 and 75 °C) for short deposition times, typically within 1-10 min if the temperature is 45 °C or less than 5 min at 75 °C. For longer times, dendritic metal structures start to grow, ultimately leading to highly rough interconnected Pt networks. Upon increasing the temperature from 22 to 75 °C and for an immersion time of 5 min, the average size of the observed Pt NPs monotonously increases from 120 to 250 nm, and their number density calculated using scanning electron microscopy decreases from (4.5 ± 1.0) × 108 to (2.0 ± 0.5) × 108 Pt NPs cm-2. The impact of both the morphology and the distribution of the Pt NPs on the photoelectrocatalytic activity of the resulting metallized photocathodes is then analyzed. Pt deposited at 45 °C for 5 min yields photocathodes with the best electrocatalytic activity for the hydrogen evolution reaction. Under illumination at 33 mW cm-2, this optimized photoelectrode shows a fill factor of 45%, an efficiency (η) of 9.7%, and a short-circuit current density (|Jsc|) at 0 V versus a reversible hydrogen electrode of 15.5 mA cm-2.

19.
ACS Appl Mater Interfaces ; 8(37): 24810-8, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27575424

ABSTRACT

Macroporous layers are grown onto n-type silicon by successive photoelectrochemical etching in HF-containing solution and chemical etching in KOH. This specific latter treatment gives highly antireflective properties of the Si surface. The duration of the chemical etching is optimized to render the surface as absorbent as possible, and the morphology of the as-grown layer is characterized by scanning electron microscopy. Further functionalization of such structured Si surface is carried out by atomic layer deposition of a thin conformal and homogeneous TiO2 layer that is crystallized by an annealing at 450 °C. This process allows using such surfaces as photoanodes for water oxidation. The 40 nm thick TiO2 film acts indeed as an efficient protective layer against the photocorrosion of the porous Si in KOH, enhances its wettability, and improves the light absorption of the photoelectrode. The macroporous dual-absorber TiO2/Si has a beneficial effect on water oxidation in 1 M KOH and leads to a considerable negative shift of the onset potential of ∼400 mV as well as a 50% increase in photocurrent at 1 V vs SCE.

20.
J Nanosci Nanotechnol ; 16(5): 5353-8, 2016 May.
Article in English | MEDLINE | ID: mdl-27483930

ABSTRACT

TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.


Subject(s)
Benzaldehydes/chemical synthesis , Indoles/chemistry , Nanotubes/chemistry , Nanotubes/radiation effects , Polymers/chemistry , Titanium/chemistry , Absorption, Physicochemical , Benzaldehydes/radiation effects , Benzyl Alcohol , Catalysis/radiation effects , Indoles/radiation effects , Light , Materials Testing , Nanotubes/ultrastructure , Oxidation-Reduction/radiation effects , Polymers/radiation effects , Radiation Dosage , Titanium/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...