Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Signal Transduct Target Ther ; 9(1): 37, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38360862

ABSTRACT

The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Probiotics , Humans , Brain/metabolism , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/metabolism , Brain-Gut Axis , Probiotics/therapeutic use , Prebiotics
2.
Front Pharmacol ; 13: 882704, 2022.
Article in English | MEDLINE | ID: mdl-35662688

ABSTRACT

The conventional concept of using nanocarriers to deliver chemotherapeutic drugs has advanced to accommodate additional diagnostic capability. Nanotheranostic agents (NTA), combining both treatment and diagnostic tools, are an ideal example of engineering-health integration for cancer management. Owing to the diverse materials used to construct NTAs, their safety, effectiveness, and diagnostic accuracy could vary substantially. This systematic review consolidated current NTAs incorporating 5-fluorouracil and elucidated their toxicity, anticancer efficacy, and imaging capability. Medline and Embase databases were searched up to March 18, 2022. The search, selection, and extraction were performed by the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines to ensure completeness and reproducibility. Original research papers involving 5-fluorouracil in the preparation of nanoparticles which reported their efficacy, toxicity, and diagnostic capability in animal cancer models were recruited. The quality of included studies was assessed using the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) checklist. Nine studies were eligible for the systematic review. There was no significant toxicity reported based on animal weight and organ histology. Complete tumor remission was observed in several animal models using chemo-thermal ablation with NTAs, proving the enhancement of 5-fluorouracil efficacy. In terms of imaging performance, the time to achieve maximum tumor image intensity correlates with the presence of targeting ligand on NTAs. The NTAs, which are composed of tumor-targeting ligands, hold promises for further development. Based on the input of current NTA research on cancer, this review proposed a checklist of parameters to recommend researchers for their future NTA testing, especially in animal cancer studies. Systematic Review Registration: website, identifier registration number.

3.
Cell Biochem Funct ; 40(4): 403-416, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35485606

ABSTRACT

Ubiquitin-proteasome system (UPS) and autophagy are interconnected proteolysis pathways implicated in doxorubicin resistance of breast cancer cells. Following anticancer treatments, autophagy either plays a cytoprotective role or augments treatment-induced cytotoxicity. However, the role of autophagy in breast cancer cells cotreated with doxorubicin and ixazomib remains unclear. The expression of autophagy proteins (LC3A/B and Beclin-1) and UPS protein (ubiquitin) in MDA-MB-231 and MCF-7 cells following doxorubicin, ixazomib, and/or hydroxychloroquine were determined by western blot. The combinatorial effects and combination index (CI) of triple-combination were determined by cell viability assay and CompuSyn software, respectively. Doxorubicin and ixazomib cotreatment increased Beclin-1 (3.8- and 3.5-fold) and LC3-II expression (13.5- and 1.9-fold) in MDA-MB-231 and MCF-7 cells, respectively. Adding lysosomal inhibitor hydroxychloroquine to doxorubicin and ixazomib further increased LC3-II expression to 45.0- and 16.5-fold in MDA-MB-231 and MCF-7 cells, respectively, confirming autophagy induction. The triple-combination synergistically inhibited cell growth, achieving CI 0.672 and 0.157 in MDA-MB-231 and MCF-7 cells, respectively. The triple-combination also induced ubiquitinated proteins accumulation (2.5-fold and 3.0-fold) in MDA-MB-231 and MCF-7 cells, respectively. These results suggest that the autophagy induced by doxorubicin and ixazomib cotreatment serves cytoprotective role in breast cancer cells. Simultaneous UPS and autophagy inhibition synergistically enhanced doxorubicin-mediated cytotoxicity.


Subject(s)
Breast Neoplasms , Proteasome Endopeptidase Complex , Apoptosis , Autophagy , Beclin-1/metabolism , Beclin-1/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Doxorubicin/pharmacology , Female , Humans , Hydroxychloroquine/pharmacology , Ubiquitins
4.
Anticancer Agents Med Chem ; 22(6): 1159-1170, 2022.
Article in English | MEDLINE | ID: mdl-34315396

ABSTRACT

BACKGROUND: Copper complex has been gaining much attention in anticancer research as a targeted agent since cancer cells uptake more copper than non-cancerous cells. Our group synthesised a ternary copper complex, which is composed of 1,10-phenanthroline and tyrosine [Cu(phen)(L-tyr)Cl].3H20. These two payloads have been designed to cleave DNA and inhibit protein degradation system (proteasome) concurrently in cancer cells, making this copper complex a dual-target compound. OBJECTIVE: The current study was carried out to investigate the mode of cell death and the role of autophagy induced by [Cu(phen)(L-tyr)Cl].3H20 in MCF-7 and MDA-MB-231 breast cancer cells. METHODS: Growth inhibition of [Cu(phen)(L-tyr)Cl].3H20 towards MDA-MB-231 and human non-cancerous MCF10A breast cells was determined by MTT assay. Annexin-V-FITC/PI and cell cycle analysis were evaluated by flow cytometry. The expression of p53, Bax, caspase-9, caspase-7, caspase-3 and LC3 was determined using western blot analysis. The cells were then co-treated with hydroxychloroquine to ascertain the role of autophagy induced by [Cu(phen)(L-tyr)Cl].3H20. RESULTS: [Cu(phen)(L-tyr)Cl].3H20 inhibited the growth of cancer cells dose-dependently with less toxicity towards MCF10A cells. Additionally, [Cu(phen)(L-tyr)Cl].3H20 induced apoptosis and cell cycle arrest towards MCF-7 and MDA-MB-231 breast cancer cells possibly via regulation of p53, Bax, caspase-9, caspase-3 and capase-7. The expression of LC3II was upregulated in both cancer cell lines upon treatment with [Cu(phen)(L-tyr) Cl].3H20, indicating the induction of autophagy. Co-treatment with autophagy inhibitor hydroxychloroquine significantly enhanced growth inhibition of both cell lines, suggesting that autophagy induced by [Cu(phen)(L-tyr) Cl].3H20 in both breast cancer cells promoted cell survival. CONCLUSION: [Cu(phen)(L-tyr)Cl].3H20 holds great potential to be developed for breast cancer treatment.


Subject(s)
Breast Neoplasms , Copper , Apoptosis , Autophagy , Breast Neoplasms/drug therapy , Caspase 3 , Caspase 9 , Cell Line, Tumor , Cell Proliferation , Copper/pharmacology , Female , Humans , Hydroxychloroquine , MCF-7 Cells , Tumor Suppressor Protein p53 , bcl-2-Associated X Protein
5.
Anticancer Agents Med Chem ; 22(5): 999-1011, 2022.
Article in English | MEDLINE | ID: mdl-34238173

ABSTRACT

BACKGROUND: The lack of specificity, severe side effects, and development of drug resistance have largely limited the use of platinum-based compounds in cancer treatment. Therefore, copper complexes have emerged as potential alternatives to platinum-based compounds. OBJECTIVE: Ternary copper (II) complex incorporated with 1-10-phenanthroline and L-tyrosine was investigated for its anti-cancer effects in HT-29 colorectal cancer cells. METHODS: Cytotoxic effects of ternary copper (II) complex in HT-29 cells was evaluated using MTT assay, Real-Time Cell Analysis (RTCA) and lactate dehydrogenase (LDH) assay. Cell cycle analysis was performed using flow cytometry. Apoptosis induction was studied by Annexin V-FITC/Propidium Iodide (PI) staining and mitochondrial membrane potential analysis (JC-10 staining) using flow cytometry. Intracellular Reactive Oxygen Species (ROS) were detected by DCFH-DA assay. The expression of proteins involved in the apoptotic signalling pathway (p53, caspases, and PARP-1) was evaluated by western blot analysis. RESULTS: Ternary copper (II) complex reduced the cell viability of HT-29 cells in a time- and dose-dependent manner, with IC50 of 2.4 ± 0.4 and 0.8 ± 0.04 µM at 24 and 48 hours, respectively. Cell cycle analysis demonstrated induction of S-phase cell cycle arrest. Morphological evaluation and Annexin V-FITC/PI flow cytometry analysis confirmed induction of apoptosis that was further supported by cleavage and activation of caspase-8, caspase-9, caspase-3, and PARP- 1. Mutant p53 was also downregulated in a dose-dependent manner. No LDH release, mitochondrial membrane potential disruption, and ROS production were observed. CONCLUSION: Ternary copper (II) complex holds great potential to be developed for colorectal cancer treatment.


Subject(s)
Colorectal Neoplasms , Copper , Apoptosis , Cell Cycle , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Copper/pharmacology , Humans , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism
6.
Cancers (Basel) ; 13(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34771511

ABSTRACT

Since the commercialization of morphine in 1826, numerous alkaloids have been isolated and exploited effectively for the betterment of mankind, including cancer treatment. However, the commercialization of alkaloids as anticancer agents has generally been limited by serious side effects due to their lack of specificity to cancer cells, indiscriminate tissue distribution and toxic formulation excipients. Lipid-based nanoparticles represent the most effective drug delivery system concerning clinical translation owing to their unique, appealing characteristics for drug delivery. To the extent of our knowledge, this is the first review to compile in vitro and in vivo evidence of encapsulating anticancer alkaloids in lipid-based nanoparticles. Alkaloids encapsulated in lipid-based nanoparticles have generally displayed enhanced in vitro cytotoxicity and an improved in vivo efficacy and toxicity profile than free alkaloids in various cancers. Encapsulated alkaloids also demonstrated the ability to overcome multidrug resistance in vitro and in vivo. These findings support the broad application of lipid-based nanoparticles to encapsulate anticancer alkaloids and facilitate their clinical translation. The review then discusses several limitations of the studies analyzed, particularly the discrepancies in reporting the pharmacokinetics, biodistribution and toxicity data. Finally, we conclude with examples of clinically successful encapsulated alkaloids that have received regulatory approval and are undergoing clinical evaluation.

SELECTION OF CITATIONS
SEARCH DETAIL
...