Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 34(4): 2487-2499, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37672058

ABSTRACT

OBJECTIVES: Differentiation between high-grade glioma (HGG) and post-treatment-related effects (PTRE) is challenging, but advanced imaging techniques were shown to provide benefit. We aim to investigate microstructure characteristics of metabolic compartments identified from amino acid PET and to evaluate the diagnostic potential of this multimodal and integrative O-(2-18F-fluoroethyl)-L-tyrosine-(FET)-PET and fast diffusion kurtosis imaging (DKI) approach for the detection of recurrence and IDH genotyping. METHODS: Fifty-nine participants with neuropathologically confirmed recurrent HGG (n = 39) or PTRE (n = 20) were investigated using static 18F-FET PET and a fast-DKI variant. PET and advanced diffusion metrics of metabolically defined (80-100% and 60-75% areas of 18F-FET uptake) compartments were assessed. Comparative analysis was performed using Mann-Whitney U tests with Holm-Sídák multiple-comparison test and Wilcoxon signed-rank test. Receiver operating characteristic (ROC) curves, regression, and Spearman's correlation analysis were used for statistical evaluations. RESULTS: Compared to PTRE, recurrent HGG presented increased 18F-FET uptake and diffusivity (MD60), but lower (relative) mean kurtosis tensor (rMKT60) and fractional anisotropy (FA60) (respectively p < .05). Diffusion metrics determined from the metabolic periphery showed improved diagnostic performance - most pronounced for FA60 (AUC = 0.86, p < .001), which presented similar benefit to 18F-FET PET (AUC = 0.86, p < .001) and was negatively correlated with amino acid uptake (rs = - 0.46, p < .001). When PET and DKI metrics were evaluated in a multimodal biparametric approach, TBRmax + FA60 showed highest diagnostic accuracy (AUC = 0.93, p < .001), which improved the detection of relapse compared to PET alone (difference in AUC = 0.069, p = .04). FA60 and MD60 distinguished the IDH genotype in the post-treatment setting. CONCLUSION: Detection of glioma recurrence benefits from a multimodal and integrative PET/DKI approach, which presented significant diagnostic advantage to the assessment based on PET alone. CLINICAL RELEVANCE STATEMENT: A multimodal and integrative 18F-FET PET/fast-DKI approach for the non-invasive microstructural characterization of metabolic compartments provided improved diagnostic capability for differentiation between recurrent glioma and post-treatment-related changes, suggesting a role for the diagnostic workup of patients in post-treatment settings. KEY POINTS: • Multimodal PET/MRI with integrative analysis of 18F-FET PET and fast-DKI presents clinical benefit for the assessment of CNS cancer, particularly for the detection of recurrent high-grade glioma. • Microstructure markers of the metabolic periphery yielded biologically pertinent estimates characterising the tumour microenvironment, and, thereby, presented improved diagnostic accuracy with similar accuracy to amino acid PET. • Combined 18F-FET PET/fast-DKI achieved the best diagnostic performance for detection of high-grade glioma relapse with significant benefit to the assessment based on PET alone.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/diagnostic imaging , Glioma/pathology , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Chronic Disease , Tyrosine , Recurrence , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Tumor Microenvironment
2.
J Nucl Med ; 64(11): 1683-1689, 2023 11.
Article in English | MEDLINE | ID: mdl-37652542

ABSTRACT

Molecular markers are of increasing importance for classifying, treating, and determining the prognosis for central nervous system tumors. Isocitrate dehydrogenase (IDH) is a critical regulator of glucose and amino acid metabolism. Our objective was to investigate metabolic reprogramming of glioma using compartmental uptake (CU) characteristics in O-(2-18F-fluoroethyl)-l-tyrosine (FET) PET and to evaluate its diagnostic potential for IDH genotyping. Methods: Between 2017 and 2022, patients with confirmed glioma were preoperatively investigated using static 18F-FET PET. Metabolic tumor volume (MTV), MTV for 60%-100% uptake (MTV60), and T2-weighted and contrast-enhancing lesion volumes were automatically segmented using U-Net neural architecture and isocontouring. Volume intersections were determined using the Dice coefficient. Uptake characteristics were determined for metabolically defined compartments (central [80%-100%] and peripheral [60%-75%] areas of 18F-FET uptake). CU ratio was defined as the fraction between the peripheral and central compartments. Mean target-to-background ratio was calculated. Comparisons were performed using parametric and nonparametric tests. Receiver-operating-characteristic curves, regression, and correlation were used for statistical analysis. Results: In total, 52 participants (male, 27, female, 25; mean age ± SD, 51 ± 16 y) were evaluated. MTV60 was greater and distinct from contrast-enhancing lesion volume (P = 0.046). IDH-mutated tumors presented a greater volumetric CU ratio and SUV CU ratio than IDH wild-type tumors (P < 0.05). Volumetric CU ratio determined IDH genotype with excellent diagnostic performance (area under the curve [AUC], 0.88; P < 0.001) at more than 5.49 (sensitivity, 86%, specificity, 90%), because IDH-mutated tumors presented a greater peripheral metabolic compartment than IDH wild-type tumors (P = 0.045). MTV60 and MTV were not suitable for IDH classification (P > 0.05). SUV CU ratio (AUC, 0.72; P = 0.005) and target-to-background ratio (AUC, 0.68; P = 0.016) achieved modest diagnostic performance-inferior to the volumetric CU ratio. Furthermore, the classification of loss of heterozygosity of chromosomes 1p and 19q (AUC, 0.75; P = 0.019), MGMT promoter methylation (AUC, 0.70; P = 0.011), and ATRX loss (AUC, 0.73; P = 0.004) by amino acid PET was evaluated. Conclusion: We proposed parametric 18F-FET PET as a noninvasive metabolic biomarker for the evaluation of CU characteristics, which differentiated IDH genotype with excellent diagnostic performance, establishing a critical association between spatial metabolic heterogeneity, mitochondrial tricarboxylic acid cycle, and genomic features with critical implications for clinical management and the diagnostic workup of patients with central nervous system cancer.


Subject(s)
Brain Neoplasms , Glioma , Humans , Male , Female , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Isocitrate Dehydrogenase/genetics , Genotype , Positron-Emission Tomography , Glioma/diagnostic imaging , Glioma/genetics , Glioma/metabolism , Tyrosine , Amino Acids , Magnetic Resonance Imaging
3.
Eur J Nucl Med Mol Imaging ; 49(11): 3692-3704, 2022 09.
Article in English | MEDLINE | ID: mdl-35507058

ABSTRACT

BACKGROUND: Fibrin deposition is a fundamental pathophysiological event in the inflammatory component of various CNS disorders, such as multiple sclerosis (MS) and Alzheimer's disease. Beyond its traditional role in coagulation, fibrin elicits immunoinflammatory changes with oxidative stress response and activation of CNS-resident/peripheral immune cells contributing to CNS injury. PURPOSE: To investigate if CNS fibrin deposition can be determined using molecular MRI, and to assess its capacity as a non-invasive imaging biomarker that corresponds to inflammatory response and barrier impairment. MATERIALS AND METHODS: Specificity and efficacy of a peptide-conjugated Gd-based molecular MRI probe (EP2104-R) to visualise and quantify CNS fibrin deposition were evaluated. Probe efficacy to specifically target CNS fibrin deposition in murine adoptive-transfer experimental autoimmune encephalomyelitis (EAE), a pre-clinical model for MS (n = 12), was assessed. Findings were validated using immunohistochemistry and laser ablation inductively coupled plasma mass spectrometry. Deposition of fibrin in neuroinflammatory conditions was investigated and its diagnostic capacity for disease staging and monitoring as well as quantification of immunoinflammatory response was determined. Results were compared using t-tests (two groups) or one-way ANOVA with multiple comparisons test. Linear regression was used to model the relationship between variables. RESULTS: For the first time (to our knowledge), CNS fibrin deposition was visualised and quantified in vivo using molecular imaging. Signal enhancement was apparent in EAE lesions even 12-h after administration of EP2104-R due to targeted binding (M ± SD, 1.07 ± 0.10 (baseline) vs. 0.73 ± 0.09 (EP2104-R), p = .008), which could be inhibited with an MRI-silent analogue (M ± SD, 0.60 ± 0.14 (EP2104-R) vs. 0.96 ± 0.13 (EP2104-La), p = .006). CNS fibrin deposition corresponded to immunoinflammatory activity (R2 = 0.85, p < .001) and disability (R2 = 0.81, p < .001) in a model for MS, which suggests a clinical role for staging and monitoring. Additionally, EP2104-R showed substantially higher SNR (M ± SD, 6.6 ± 1 (EP2104-R) vs. 2.7 ± 0.4 (gadobutrol), p = .004) than clinically used contrast media, which increases sensitivity for lesion detection. CONCLUSIONS: Molecular imaging of CNS fibrin deposition provides an imaging biomarker for inflammatory CNS pathology, which corresponds to pathophysiological ECM remodelling and disease activity, and yields high signal-to-noise ratio, which can improve diagnostic neuroimaging across several neurological diseases with variable degrees of barrier impairment.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Contrast Media , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Encephalomyelitis, Autoimmune, Experimental/pathology , Fibrin , Humans , Magnetic Resonance Imaging/methods , Mice , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology
4.
Sci Rep ; 10(1): 6862, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32322041

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 9(1): 14603, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601829

ABSTRACT

We investigated the diagnostic potential of simultaneous 18F-FET PET/MR-imaging for differentiation between recurrent glioma and post-treatment related effects (PTRE) using quantitative volumetric (3D-VOI) lesion analysis. In this retrospective study, a total of 42 patients including 32 patients with histologically proven glioma relapse and 10 patients with PTRE (histopathologic follow-up, n = 4, serial imaging follow-up, n = 6) were evaluated regarding recurrence. PET/MR-imaging was semi-automatically analysed based on FET tracer uptake using conservative SUV thresholding (isocontour 80%) with emphasis on the metabolically most active regions. Mean (relative) apparent diffusion coefficient (ADCmean, rADCmean), standardised-uptake-value (SUV) including target-to-background (TBR) ratio were determined. Glioma relapse presented higher ADCmean (MD ± SE, 284 ± 91, p = 0.003) and TBRmax (MD ± SE, 1.10 ± 0.45, p = 0.02) values than treatment-related changes. Both ADCmean (AUC ± SE = 0.82 ± 0.07, p-value < 0.001) and TBRmax (AUC ± SE = 0.81 ± 0.08, p-value < 0.001) achieved reliable diagnostic performance in differentiating glioma recurrence from PTRE. Bivariate analysis based on a combination of ADCmean and TBRmax demonstrated highest diagnostic accuracy (AUC ± SE = 0.90 ± 0.05, p-value < 0.001), improving clinical (false negative and false positive) classification. In conclusion, biparametric analysis using DWI and FET PET, both providing distinct information regarding the underlying pathophysiology, presented best diagnostic accuracy and clinical benefit in differentiating recurrent glioma from treatment-related changes.


Subject(s)
Brain Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Adult , Area Under Curve , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/therapy , False Positive Reactions , Female , Glioma/pathology , Glioma/therapy , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Multimodal Imaging , Neoplasm Recurrence, Local , Neuroimaging , Positron-Emission Tomography , ROC Curve , Retrospective Studies , Treatment Outcome , Tyrosine/analogs & derivatives
6.
Sci Rep ; 9(1): 12219, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31434923

ABSTRACT

We proposed a generic template-derived approach for (semi-) automated brain extraction in animal MRI studies and evaluated our implementation with different animal models (macaque, marmoset, rodent) and MRI protocols (T1, T2). While conventional MR-neuroimaging studies perform brain extraction as an initial step priming subsequent image-registration from subject to template, our proposed approach propagates an anatomical template to (whole-head) individual subjects in reverse order, which is challenging due to the surrounding extracranial tissue, greater differences in contrast pattern and larger areas with field inhomogeneity. As a novel approach, the herein introduced brain extraction algorithm derives whole-brain segmentation using rigid and non-rigid deformation based on unbiased anatomical atlas building with a priori estimates from study-cohort and an initial approximate brain extraction. We evaluated our proposed method in comparison to several other technical approaches including "Marker based watershed scalper", "Brain-Extraction-Tool", "3dSkullStrip", "Primatologist-Toolbox", "Rapid Automatic Tissue Segmentation" and "Robust automatic rodent brain extraction using 3D pulse-coupled neural networks" with manual skull-stripping as reference standard. ABX demonstrated best performance with accurate (≥92%) and consistent results throughout datasets and across species, age and MRI protocols. ABX was made available to the public with documentation, templates and sample material ( https://www.github.com/jlohmeier/atlasBREX ).


Subject(s)
Algorithms , Brain/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neuroimaging , Animals , Callithrix , Macaca mulatta
SELECTION OF CITATIONS
SEARCH DETAIL
...