Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Arthritis Res Ther ; 17: 230, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26307404

ABSTRACT

INTRODUCTION: Autoreactive T cells are a central element in many systemic autoimmune diseases. The generation of these pathogenic T cells is instructed by antigen-presenting cells (APCs). However, signaling pathways in APCs that drive autoimmune diseases, such as rheumatoid arthritis, are not understood. METHODS: We measured phenotypic maturation, cytokine production and induction of T cell proliferation of APCs derived from wt mice and mice with a myeloid-specific deletion of PTEN (myeloid PTEN(-/-)) in vitro and in vivo. We induced collagen-induced arthritis (CIA) and K/BxN serum transfer arthritis in wt and myeloid-specific PTEN(-/-) mice. We measured the cellular composition of lymph nodes by flow cytometry and cytokines in serum and after ex vivo stimulation of T cells. RESULTS: We show that myeloid-specific PTEN(-/-) mice are almost protected from CIA. Myeloid-specific deletion of PTEN leads to a significant reduction of cytokine expression pivotal for the induction of systemic autoimmunity such as interleukin (IL)-23 and IL-6, leading to a significant reduction of a Th17 type of immune response characterized by reduced production of IL-17 and IL-22. In contrast, myeloid-specific PTEN deficiency did not affect K/BxN serum transfer arthritis, which is independent of the adaptive immune system and solely depends on innate effector functions. CONCLUSIONS: These data demonstrate that the presence of PTEN in myeloid cells is required for the development of CIA. Deletion of PTEN in myeloid cells inhibits the development of autoimmune arthritis by preventing the generation of a pathogenic Th17 type of immune response.


Subject(s)
Antigen-Presenting Cells/immunology , Arthritis, Experimental/immunology , Autoimmune Diseases/immunology , PTEN Phosphohydrolase/immunology , Th17 Cells/immunology , Animals , Antigen-Presenting Cells/metabolism , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Blotting, Western , Cytokines/blood , Cytokines/genetics , Cytokines/immunology , Flow Cytometry , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Th17 Cells/metabolism
2.
J Immunol ; 195(6): 2560-70, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26246144

ABSTRACT

The PI3K signaling cascade in APCs has been recognized as an essential pathway to initiate, maintain, and resolve immune responses. In this study, we demonstrate that a cell type-specific loss of the PI3K antagonist phosphatase and tensin homolog (PTEN) in myeloid cells renders APCs toward a regulatory phenotype. APCs deficient for PTEN exhibit reduced activation of p38 MAPK and reduced expression of T cell-polarizing cytokines. Furthermore, PTEN deficiency leads to upregulation of markers for alternative activation, such as Arginase 1, with concomitant downregulation of inducible NO synthase in APCs in vitro and in vivo. As a result, T cell polarization was dysfunctional in PTEN(-/-) APCs, in particular affecting the Th17 cell subset. Intriguingly, mice with cell type-specific deletions of PTEN-targeting APCs were protected from experimental autoimmune encephalomyelitis, which was accompanied by a pronounced reduction of IL-17- and IL-22-producing autoreactive T cells and reduced CNS influx of classically activated monocytes/macrophages. These observations support the notion that activation of the PI3K signaling cascade promotes regulatory APC properties and suppresses pathogenic T cell polarization, thereby reducing the clinical symptoms and pathology of experimental autoimmune encephalomyelitis.


Subject(s)
Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , PTEN Phosphohydrolase/genetics , Th17 Cells/immunology , Animals , Arginase/biosynthesis , Autoimmunity/immunology , CD11c Antigen/biosynthesis , Cell Differentiation/immunology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Enzyme Activation/genetics , Enzyme Activation/immunology , Interleukin-17/biosynthesis , Interleukins/biosynthesis , Lymphocyte Activation , Macrophage Activation/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/immunology , Nitric Oxide Synthase Type II/biosynthesis , Peptide Fragments/immunology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/immunology , p38 Mitogen-Activated Protein Kinases/immunology , Interleukin-22
3.
Ann Rheum Dis ; 74(1): 227-33, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24078675

ABSTRACT

OBJECTIVE: Local bone destruction in rheumatic diseases, which often leads to disability and severely reduced quality of life, is almost exclusively mediated by osteoclasts. Therefore, it is important to understand pathways regulating the generation of osteoclasts. Here, we analysed the impact of the Phosphoinositide-3-Kinase (PI3K)/Phosphatase and tensin homolog (PTEN) axis on osteoclast generation and bone biology under basal and inflammatory conditions. METHODS: We analysed osteoclastogenesis of wildtype (wt) and PTEN(-/-) cells in vitro and in vivo, pit resorption and qPCR of osteoclasts in vitro. Mice with a myeloid cell-specific deletion of PTEN and wt littermate mice were investigated by bone histomorphometry and clinical and histological assessment in the human tumour necrosis factor (TNF)-transgenic (hTNFtg) arthritis model. RESULTS: We show that myeloid-specific PTEN(-/-) mice display increased osteoclastogenesis in vitro and in vivo compared to wt mice. Loss of PTEN did not affect the generation or survival of osteoclast precursor cells. However, PTEN deficiency greatly enhanced receptor activator of nuclear factor κ-B ligand (RANKL)-induced expression of the master transcription factor of osteoclastogenesis, nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), resulting in markedly increased terminal differentiation of osteoclasts in vitro. We also observed increased osteoclastogenesis under inflammatory conditions in the hTNFtg mouse model of arthritis, where hTNFtg/myeloid-specific PTEN(-/-) mice displayed enhanced local bone destruction as well as osteoclast formation in the inflamed joints. The extent of synovial inflammation, however, as well as recruitment of osteoclast precursor cells was not different between wt and myeloid-specific PTEN(-/-) mice. CONCLUSIONS: These data demonstrate that loss of PTEN and, therefore, sustained PI3-Kinase signalling in myeloid cells especially, elevates the osteoclastogenic potential of myeloid cells, leading to enhanced inflammatory local bone destruction. Therefore, although our study allows no direct translational conclusion since we used a conditional knockout approach, the therapeutic targeting of the PI3-Kinase pathway may be of benefit in preventing structural joint damage.


Subject(s)
Arthritis, Experimental/genetics , Bone Resorption/genetics , Cell Differentiation/genetics , Myeloid Cells/metabolism , Osteoclasts/metabolism , PTEN Phosphohydrolase/genetics , Animals , Arthritis, Experimental/metabolism , Bone Resorption/metabolism , Humans , Mice , Mice, Knockout , Mice, Transgenic , NFATC Transcription Factors/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RANK Ligand/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL