Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Diabetes Care ; 46(6): 1271-1281, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37125963

ABSTRACT

OBJECTIVE: In this study we aim to unravel genetic determinants of coronary heart disease (CHD) in type 2 diabetes (T2D) and explore their applications. RESEARCH DESIGN AND METHODS: We performed a two-stage genome-wide association study for CHD in Chinese patients with T2D (3,596 case and 8,898 control subjects), followed by replications in European patients with T2D (764 case and 4,276 control subjects) and general populations (n = 51,442-547,261). Each identified variant was examined for its association with a wide range of phenotypes and its interactions with glycemic, blood pressure (BP), and lipid controls in incident cardiovascular diseases. RESULTS: We identified a novel variant (rs10171703) for CHD (odds ratio 1.21 [95% CI 1.13-1.30]; P = 2.4 × 10-8) and BP (ß ± SE 0.130 ± 0.017; P = 4.1 × 10-14) at PDE1A in Chinese T2D patients but found only a modest association with CHD in general populations. This variant modulated the effects of BP goal attainment (130/80 mmHg) on CHD (Pinteraction = 0.0155) and myocardial infarction (MI) (Pinteraction = 5.1 × 10-4). Patients with CC genotype of rs10171703 had >40% reduction in either cardiovascular events in response to BP control (2.9 × 10-8 < P < 3.6 × 10-5), those with CT genotype had no difference (0.0726 < P < 0.2614), and those with TT genotype had a threefold increase in MI risk (P = 6.7 × 10-3). CONCLUSIONS: We discovered a novel CHD- and BP-related variant at PDE1A that interacted with BP goal attainment with divergent effects on CHD risk in Chinese patients with T2D. Incorporating this information may facilitate individualized treatment strategies for precision care in diabetes, only when our findings are validated.


Subject(s)
Coronary Disease , Cyclic Nucleotide Phosphodiesterases, Type 1 , Diabetes Mellitus, Type 2 , Myocardial Infarction , Humans , Coronary Disease/genetics , Diabetes Mellitus, Type 2/complications , East Asian People , Genome-Wide Association Study , Goals , Myocardial Infarction/complications , Myocardial Infarction/genetics , Polymorphism, Single Nucleotide , Risk Assessment , Risk Factors , Cyclic Nucleotide Phosphodiesterases, Type 1/genetics
2.
G3 (Bethesda) ; 12(8)2022 07 29.
Article in English | MEDLINE | ID: mdl-35674384

ABSTRACT

We report a chromosomal-level genome assembly of a male North American wolverine (Gulo gulo luscus) from the Kugluktuk region of Nunavut, Canada. The genome was assembled directly from long-reads, comprising: 758 contigs with a contig N50 of 36.6 Mb; contig L50 of 20; base count of 2.39 Gb; and a near complete representation (99.98%) of the BUSCO 5.2.2 set of 9,226 genes. A presumptive chromosomal-level assembly was generated by scaffolding against two chromosomal-level Mustelidae reference genomes, the ermine and the Eurasian river otter, to derive a final scaffold N50 of 144.0 Mb and a scaffold L50 of 7. We annotated a comprehensive set of genes that have been associated with models of aggressive behavior, a trait which the wolverine is purported to have in the popular literature. To support an integrated, genomics-based wildlife management strategy at a time of environmental disruption from climate change, we annotated the principal genes of the innate immune system to provide a resource to study the wolverine's susceptibility to new infectious and parasitic diseases. As a resource, we annotated genes involved in the modality of infection by the coronaviruses, an important class of viral pathogens of growing concern as shown by the recent spillover infections by severe acute respiratory syndrome coronavirus-2 to naïve wildlife. Tabulation of heterozygous single nucleotide variants in our specimen revealed a heterozygosity level of 0.065%, indicating a relatively diverse genetic pool that would serve as a baseline for the genomics-based conservation of the wolverine, a rare cold-adapted carnivore now under threat.


Subject(s)
COVID-19 , Mustelidae , Animals , Chromosomes , Genomics , Humans , Male , Mustelidae/genetics , North America
3.
BMC Med Genomics ; 11(1): 20, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29475453

ABSTRACT

BACKGROUND: Avian influenza A H5N1 virus can cause lethal disease in humans. The virus can trigger severe pneumonia and lead to acute respiratory distress syndrome. Data from clinical, in vitro and in vivo suggest that virus-induced cytokine dysregulation could be a contributory factor to the pathogenesis of human H5N1 disease. However, the precise mechanism of H5N1 infection eliciting the unique host response are still not well understood. METHODS: To obtain a better understanding of the molecular events at the earliest time points, we used RNA-Seq to quantify and compare the host mRNA and miRNA transcriptomes induced by the highly pathogenic influenza A H5N1 (A/Vietnam/3212/04) or low virulent H1N1 (A/Hong Kong/54/98) viruses in human monocyte-derived macrophages at 1-, 3-, and 6-h post infection. RESULTS: Our data reveals that two macrophage populations corresponding to M1 (classically activated) and M2 (alternatively activated) macrophage subtypes respond distinctly to H5N1 virus infection when compared to H1N1 virus or mock infection, a distinction that could not be made from previous microarray studies. When this confounding variable is considered in our statistical model, a clear set of dysregulated genes and pathways emerges specifically in H5N1 virus-infected macrophages at 6-h post infection, whilst was not found with H1N1 virus infection. Furthermore, altered expression of genes in these pathways, which have been previously implicated in viral host response, occurs specifically in the M1 subtype. We observe a significant up-regulation of genes in the RIG-I-like receptor signaling pathway. In particular, interferons, and interferon-stimulated genes are broadly affected. The negative regulators of interferon signaling, the suppressors of cytokine signaling, SOCS-1 and SOCS-3, were found to be markedly up-regulated in the initial round of H5N1 virus replication. Elevated levels of these suppressors could lead to the eventual suppression of cellular antiviral genes, contributing to pathophysiology of H5N1 virus infection. CONCLUSIONS: Our study provides important mechanistic insights into the understanding of H5N1 viral pathogenesis and the multi-faceted host immune responses. The dysregulated genes could be potential candidates as therapeutic targets for treating H5N1 disease.


Subject(s)
Gene Expression Profiling , Influenza A Virus, H5N1 Subtype/physiology , Macrophages/cytology , Macrophages/virology , Humans , Immunity, Innate/genetics , Influenza A Virus, H1N1 Subtype/physiology , Macrophages/immunology , Macrophages/metabolism , MicroRNAs/genetics
4.
Am J Hum Genet ; 102(1): 142-155, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29304372

ABSTRACT

A remaining hurdle to whole-genome sequencing (WGS) becoming a first-tier genetic test has been accurate detection of copy-number variations (CNVs). Here, we used several datasets to empirically develop a detailed workflow for identifying germline CNVs >1 kb from short-read WGS data using read depth-based algorithms. Our workflow is comprehensive in that it addresses all stages of the CNV-detection process, including DNA library preparation, sequencing, quality control, reference mapping, and computational CNV identification. We used our workflow to detect rare, genic CNVs in individuals with autism spectrum disorder (ASD), and 120/120 such CNVs tested using orthogonal methods were successfully confirmed. We also identified 71 putative genic de novo CNVs in this cohort, which had a confirmation rate of 70%; the remainder were incorrectly identified as de novo due to false positives in the proband (7%) or parental false negatives (23%). In individuals with an ASD diagnosis in which both microarray and WGS experiments were performed, our workflow detected all clinically relevant CNVs identified by microarrays, as well as additional potentially pathogenic CNVs < 20 kb. Thus, CNVs of clinical relevance can be discovered from WGS with a detection rate exceeding microarrays, positioning WGS as a single assay for genetic variation detection.


Subject(s)
DNA Copy Number Variations/genetics , Whole Genome Sequencing , Workflow , Algorithms , Child , Female , Haplotypes/genetics , Humans , Male , Reproducibility of Results , Sequence Analysis, DNA
5.
G3 (Bethesda) ; 7(2): 755-773, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28087693

ABSTRACT

The Canadian beaver (Castor canadensis) is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 ×) long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 ×) and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon-gene models derived from 9805 full-length open reading frames (FL-ORFs) constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs) gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology.


Subject(s)
Genome , Rodentia/genetics , Transcriptome/genetics , Animals , Genomics , Molecular Sequence Annotation , Open Reading Frames/genetics
7.
Sci Rep ; 6: 35228, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27752041

ABSTRACT

Protein interactions play significant roles in complex diseases. We analyzed peripheral blood mononuclear cells (PBMC) transcriptome using a multi-method strategy. We constructed a tissue-specific interactome (T2Di) and identified 420 molecular signatures associated with T2D-related comorbidity and symptoms, mainly implicated in inflammation, adipogenesis, protein phosphorylation and hormonal secretion. Apart from explaining the residual associations within the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study, the T2Di signatures were enriched in pathogenic cell type-specific regulatory elements related to fetal development, immunity and expression quantitative trait loci (eQTL). The T2Di revealed a novel locus near a well-established GWAS loci AChE, in which SRRT interacts with JAZF1, a T2D-GWAS gene implicated in pancreatic function. The T2Di also included known anti-diabetic drug targets (e.g. PPARD, MAOB) and identified possible druggable targets (e.g. NCOR2, PDGFR). These T2Di signatures were validated by an independent computational method, and by expression data of pancreatic islet, muscle and liver with some of the signatures (CEBPB, SREBF1, MLST8, SRF, SRRT and SLC12A9) confirmed in PBMC from an independent cohort of 66 T2D and 66 control subjects. By combining prior knowledge and transcriptome analysis, we have constructed an interactome to explain the multi-layered regulatory pathways in T2D.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Transcriptome/genetics , Diabetes Mellitus, Type 2/pathology , Gene Expression Profiling/methods , Genetic Predisposition to Disease , Genotype , Humans , Leukocytes, Mononuclear/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci
8.
PLoS Genet ; 12(4): e1005954, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27082250

ABSTRACT

We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics.


Subject(s)
Bass/genetics , Chromosome Mapping , Animals , Bass/classification , Genome , In Situ Hybridization, Fluorescence , Phylogeny
9.
BMC Genomics ; 16: 135, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25765076

ABSTRACT

BACKGROUND: The marine medaka Oryzias melastigma has been demonstrated as a novel model for marine ecotoxicological studies. However, the lack of genome and transcriptome reference has largely restricted the use of O. melastigma in the assessment of in vivo molecular responses to environmental stresses and the analysis of biological toxicity in the marine environment. Although O. melastigma is believed to be phylogenetically closely related to Oryzias latipes, the divergence between these two species is still largely unknown. Using Illumina high-throughput RNA sequencing followed by de novo assembly and comprehensive gene annotation, we provided transcriptomic resources for the brain, liver, ovary and testis of O. melastigma. We also investigated the possible extent of divergence between O. melastigma and O. latipes at the transcriptome level. RESULTS: More than 14,000 transcripts across brain, liver, ovary and testis in marine medaka were annotated, of which 5880 transcripts were orthologous between O. melastigma and O. latipes. Tissue-enriched genes were identified in O. melastigma, and Gene Ontology analysis demonstrated the functional specificity of the annotated genes in respective tissue. Lastly, the identification of marine medaka-enriched transcripts suggested the necessity of generating transcriptome dataset of O. melastigma. CONCLUSIONS: Orthologous transcripts between O. melastigma and O. latipes, tissue-enriched genes and O. melastigma-enriched transcripts were identified. Genome-wide expression studies of marine medaka require an assembled transcriptome, and this sequencing effort has generated a valuable resource of coding DNA for a non-model species. This transcriptome resource will aid future studies assessing in vivo molecular responses to environmental stresses and those analyzing biological toxicity in the marine environment.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Oryzias/genetics , Animals , Aquatic Organisms/genetics , Fresh Water , Gene Expression Regulation/genetics , Molecular Sequence Data , Organ Specificity/genetics
10.
PLoS One ; 9(10): e110698, 2014.
Article in English | MEDLINE | ID: mdl-25350659

ABSTRACT

The marine medaka (Oryzias melastigma) has been increasingly used as a fish model for detecting environmental stresses and chemical contaminants in the marine environment. Recent mammalian studies have shown that environmental stresses can alter the expression profiles of microRNAs (miRNAs), leading to transgenerational effects. Here, we use high-throughput Illumina RNA sequencing (RNA-Seq) for miRNA transcriptome analysis of brain, liver, and gonads from sexually mature male and female marine medaka. A total of 128,883,806 filtered sequence reads were generated from six small RNA libraries, identifying a total of 2,125,663 non-redundant sequences. These sequences were aligned and annotated to known animal miRNAs (miRBase) using the BLAST method. A total of 223 distinct miRNA types were identified, with the greatest number expressed in brain tissue. Our data suggested that 55 miRNA types from 34 families are common to all tested tissues, while some of the miRNAs are tissue-enriched or sex-enriched. Quantitative real-time PCR analysis further demonstrated that let-7a, miR-122, and miR-9-3p were downregulated in hypoxic female medaka, while miR-2184 was specifically upregulated in the testis of hypoxic male fish. This is the first study to identify miRNAs in O. melastigma using small RNA deep sequencing technology. Because miRNA expression is highly conserved between marine medaka and other vertebrates, marine medaka may serve as a good model for studies on the functional roles of miRNAs in hypoxia stress response and signaling in marine fish.


Subject(s)
Brain/metabolism , Gene Expression Profiling , Gonads/metabolism , Liver/metabolism , MicroRNAs/genetics , Oryzias/genetics , Animals , Female , Gene Library , High-Throughput Nucleotide Sequencing , Hypoxia/metabolism , Male , Oryzias/metabolism
11.
Genome Biol ; 15(7): 408, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-25074712

ABSTRACT

BACKGROUND: DNA methylation is an important type of epigenetic modification involved in gene regulation. Although strong DNA methylation at promoters is widely recognized to be associated with transcriptional repression, many aspects of DNA methylation remain not fully understood, including the quantitative relationships between DNA methylation and expression levels, and the individual roles of promoter and gene body methylation. RESULTS: Here we present an integrated analysis of whole-genome bisulfite sequencing and RNA sequencing data from human samples and cell lines. We find that while promoter methylation inversely correlates with gene expression as generally observed, the repressive effect is clear only on genes with a very high DNA methylation level. By means of statistical modeling, we find that DNA methylation is indicative of the expression class of a gene in general, but gene body methylation is a better indicator than promoter methylation. These findings are general in that a model constructed from a sample or cell line could accurately fit the unseen data from another. We further find that promoter and gene body methylation have minimal redundancy, and either one is sufficient to signify low expression. Finally, we obtain increased modeling power by integrating histone modification data with the DNA methylation data, showing that neither type of information fully subsumes the other. CONCLUSION: Our results suggest that DNA methylation outside promoters also plays critical roles in gene regulation. Future studies on gene regulatory mechanisms and disease-associated differential methylation should pay more attention to DNA methylation at gene bodies and other non-promoter regions.


Subject(s)
DNA Methylation , Gene Expression Regulation , Sequence Analysis, DNA/methods , Cell Line , Female , Gene Expression Profiling , Genome, Human , Humans , Male , Models, Statistical , Molecular Sequence Data , Promoter Regions, Genetic , Sequence Analysis, RNA
12.
Ann Hum Genet ; 78(5): 381-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24947032

ABSTRACT

To adopt an efficient approach of identifying rare variants possibly related to Hirschsprung disease (HSCR), a pilot study was set up to evaluate the performance of a newly designed protocol for next generation targeted resquencing. In total, 20 Chinese HSCR patients and 20 Chinese sex-matched individuals with no HSCR were included, for which coding sequences (CDS) of 62 genes known to be in signaling pathways relevant to enteric nervous system development were selected for capture and sequencing. Blood DNAs from eight pools of five cases or controls were enriched by PCR-based RainDance technology (RDT) and then sequenced on a 454 FLX platform. As technical validation, five patients from case Pool-3 were also independently enriched by RDT, indexed with barcode and sequenced with sufficient coverage. Assessment for CDS single nucleotide variants showed DNA pooling performed well (specificity/sensitivity at 98.4%/83.7%) at the common variant level; but relatively worse (specificity/sensitivity at 65.5%/61.3%) at the rare variant level. Further Sanger sequencing only validated five out of 12 rare damaging variants likely involved in HSCR. Hence more improvement at variant detection and sequencing technology is needed to realize the potential of DNA pooling for large-scale resequencing projects.


Subject(s)
Asian People/genetics , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Hirschsprung Disease/genetics , Signal Transduction/genetics , Enteric Nervous System/physiology , Female , Humans , Male , Pilot Projects , Polymorphism, Single Nucleotide/genetics , Sensitivity and Specificity , Signal Transduction/physiology
13.
Genome Biol Evol ; 6(3): 629-41, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24572018

ABSTRACT

The 20 canonical amino acids of the genetic code have been invariant over 3 billion years of biological evolution. Although various aminoacyl-tRNA synthetases can charge their cognate tRNAs with amino acid analogs, there has been no known displacement of any canonical amino acid from the code. Experimental departure from this universal protein alphabet comprising the canonical amino acids was first achieved in the mutants of the Bacillus subtilis QB928 strain, which after serial selection and mutagenesis led to the HR23 strain that could use 4-fluorotryptophan (4FTrp) but not canonical tryptophan (Trp) for propagation. To gain insight into this displacement of Trp from the genetic code by 4FTrp, genome sequencing was performed on LC33 (a precursor strain of HR23), HR23, and TR7 (a revertant of HR23 that regained the capacity to propagate on Trp). Compared with QB928, the negative regulator mtrB of Trp transport was found to be knocked out in LC33, HR23, and TR7, and sigma factor sigB was mutated in HR23 and TR7. Moreover, rpoBC encoding RNA polymerase subunits were mutated in three independent isolates of TR7 relative to HR23. Increased expression of sigB was also observed in HR23 and in TR7 growing under 4FTrp. These findings indicated that stabilization of the genetic code can be provided by just a small number of analog-sensitive proteins, forming an oligogenic barrier that safeguards the canonical amino acids throughout biological evolution.


Subject(s)
Amino Acids/chemistry , Genetic Code , Tryptophan/analogs & derivatives , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/genetics , Bacillus subtilis/genetics , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Mutation , Protein Conformation , RNA, Transfer/genetics , Sequence Alignment , Sequence Analysis, DNA , Sequence Analysis, RNA , Sigma Factor/genetics , Tryptophan/chemistry
14.
PLoS Negl Trop Dis ; 7(8): e2398, 2013.
Article in English | MEDLINE | ID: mdl-23991243

ABSTRACT

BACKGROUND: Penicillium marneffei is the most important thermal dimorphic fungus causing systemic mycosis in China and Southeast Asia. While miRNAs are increasingly recognized for their roles in post-transcriptional regulation of gene expression in animals and plants, miRNAs in fungi were less well studied and their potential roles in fungal dimorphism were largely unknown. Based on P. marneffei genome sequence, we hypothesize that miRNA-like RNAs (milRNAs) may be expressed in the dimorphic fungus. METHODOLOGY/PRINCIPAL FINDINGS: We attempted to identify milRNAs in P. marneffei in both mycelial and yeast phase using high-throughput sequencing technology. Small RNAs were more abundantly expressed in mycelial than yeast phase. Sequence analysis revealed 24 potential milRNA candidates, including 17 candidates in mycelial and seven in yeast phase. Two genes, dcl-1 and dcl-2, encoding putative Dicer-like proteins and the gene, qde-2, encoding Argonaute-like protein, were identified in P. marneffei. Phylogenetic analysis showed that dcl-2 of P. marneffei was more closely related to the homologues in other thermal dimorphic pathogenic fungi than to Penicillium chrysogenum and Aspergillus spp., suggesting the co-evolution of dcl-2 among the thermal dimorphic fungi. Moreover, dcl-2 demonstrated higher mRNA expression levels in mycelial than yeast phase by 7 folds (P<0.001). Northern blot analysis confirmed the expression of two milRNAs, PM-milR-M1 and PM-milR-M2, only in mycelial phase. Using dcl-1(KO), dcl-2(KO), dcl(DKO) and qde-2(KO) deletion mutants, we showed that the biogenesis of both milRNAs were dependent on dcl-2 but not dcl-1 or qde-2. The mRNA expression levels of three predicted targets of PM-milR-M1 were upregulated in knockdown strain PM-milR-M1 (KD), supporting regulatory function of milRNAs. CONCLUSIONS/SIGNIFICANCE: Our findings provided the first evidence for differential expression of milRNAs in different growth phases of thermal dimorphic fungi and shed light on the evolution of fungal proteins involved in milRNA biogenesis and possible role of post-transcriptional control in governing thermal dimorphism.


Subject(s)
Gene Expression Regulation, Fungal , MicroRNAs/genetics , Penicillium/genetics , RNA, Fungal/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Mycelium/cytology , Mycelium/genetics , Mycelium/growth & development , Penicillium/cytology , Penicillium/growth & development
15.
PLoS One ; 8(1): e53649, 2013.
Article in English | MEDLINE | ID: mdl-23341963

ABSTRACT

In recent years, PCR-based pyrosequencing of 16S rRNA genes has continuously increased our understanding of complex microbial communities in various environments of the Earth. However, there is always concern on the potential biases of diversity determination using different 16S rRNA gene primer sets and covered regions. Here, we first report how bacterial 16S rRNA gene pyrotags derived from a series of different primer sets resulted in the biased diversity metrics. In total, 14 types of pyrotags were obtained from two-end pyrosequencing of 7 amplicon pools generated by 7 primer sets paired by 1 of 4 forward primers (V1F, V3F, V5F, and V7F) and 1 of 4 reverse primers (V2R, V4R, V6R, and V9R), respectively. The results revealed that: i) the activated sludge exhibited a large bacterial diversity that represented a broad range of bacterial populations and served as a good sample in this methodology research; ii) diversity metrics highly depended on the selected primer sets and covered regions; iii) paired pyrotags obtained from two-end pyrosequencing of each short amplicon displayed different diversity metrics; iv) relative abundance analysis indicated the sequencing depth affected the determination of rare bacteria but not abundant bacteria; v) the primer set of V1F and V2R significantly underestimated the diversity of activated sludge; and vi) the primer set of V3F and V4R was highly recommended for future studies due to its advantages over other primer sets. All of these findings highlight the significance of this methodology research and offer a valuable reference for peer researchers working on microbial diversity determination.


Subject(s)
Bacteria/genetics , DNA Primers/metabolism , Genetic Variation , RNA, Ribosomal, 16S/genetics , Temperature , Bacteria/classification , Cluster Analysis , Sequence Analysis, DNA
16.
Nat Med ; 19(2): 209-16, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23291631

ABSTRACT

A better understanding of human hepatocellular carcinoma (HCC) pathogenesis at the molecular level will facilitate the discovery of tumor-initiating events. Transcriptome sequencing revealed that adenosine-to-inosine (A→I) RNA editing of AZIN1 (encoding antizyme inhibitor 1) is increased in HCC specimens. A→I editing of AZIN1 transcripts, specifically regulated by ADAR1 (encoding adenosine deaminase acting on RNA-1), results in a serine-to-glycine substitution at residue 367 of AZIN1, located in ß-strand 15 (ß15) and predicted to cause a conformational change, induced a cytoplasmic-to-nuclear translocation and conferred gain-of-function phenotypes that were manifested by augmented tumor-initiating potential and more aggressive behavior. Compared with wild-type AZIN1 protein, the edited form has a stronger affinity to antizyme, and the resultant higher AZIN1 protein stability promotes cell proliferation through the neutralization of antizyme-mediated degradation of ornithine decarboxylase (ODC) and cyclin D1 (CCND1). Collectively, A→I RNA editing of AZIN1 may be a potential driver in the pathogenesis of human cancers, particularly HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carrier Proteins/genetics , Liver Neoplasms/genetics , RNA Editing , Active Transport, Cell Nucleus , Adenosine Deaminase/physiology , Animals , Carcinoma, Hepatocellular/etiology , Cell Line, Tumor , Cell Proliferation , Cyclin D1/metabolism , Humans , Liver Neoplasms/etiology , Male , Mice , Ornithine Decarboxylase/metabolism , RNA-Binding Proteins
17.
Cancer Res ; 72(22): 6024-35, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22991305

ABSTRACT

Esophageal squamous cell carcinoma (ESCC), the major histologic subtype of esophageal cancer, is a devastating disease characterized by distinctly high incidences and mortality rates. However, there remains limited understanding of molecular events leading to development and progression of the disease, which are of paramount importance to defining biomarkers for diagnosis, prognosis, and personalized treatment. By high-throughout transcriptome sequence profiling of nontumor and ESCC clinical samples, we identified a subset of significantly differentially expressed genes involved in integrin signaling. The Rab25 gene implicated in endocytic recycling of integrins was the only gene in this group significantly downregulated, and its downregulation was confirmed as a frequent event in a second larger cohort of ESCC tumor specimens by quantitative real-time PCR and immunohistochemical analyses. Reduced expression of Rab25 correlated with decreased overall survival and was also documented in ESCC cell lines compared with pooled normal tissues. Demethylation treatment and bisulfite genomic sequencing analyses revealed that downregulation of Rab25 expression in both ESCC cell lines and clinical samples was associated with promoter hypermethylation. Functional studies using lentiviral-based overexpression and suppression systems lent direct support of Rab25 to function as an important tumor suppressor with both anti-invasive and -angiogenic abilities, through a deregulated FAK-Raf-MEK1/2-ERK signaling pathway. Further characterization of Rab25 may provide a prognostic biomarker for ESCC outcome prediction and a novel therapeutic target in ESCC treatment.


Subject(s)
Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Genes, Tumor Suppressor , rab GTP-Binding Proteins/genetics , Animals , Base Sequence , Carcinoma, Squamous Cell/blood supply , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement/genetics , DNA Methylation , Down-Regulation , Esophageal Neoplasms/blood supply , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Gene Expression Profiling , Humans , MAP Kinase Signaling System , Mice , Mice, Nude , Molecular Sequence Data , Neoplasm Invasiveness , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Promoter Regions, Genetic , rab GTP-Binding Proteins/biosynthesis
18.
Gastroenterology ; 143(3): 675-686.e12, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22705009

ABSTRACT

BACKGROUND & AIMS: Esophageal squamous cell carcinoma (ESCC) is the most commonly observed histologic subtype of esophageal cancer. ESCC is believed to develop via accumulation of numerous genetic alterations, including inactivation of tumor suppressor genes and activation of oncogenes. We searched for transcripts that were altered in human ESCC samples compared with nontumor tissues. METHODS: We performed integrative transcriptome sequencing (RNA-Seq) analysis using ESCC samples from 3 patients and adjacent nontumor tissues to identify transcripts that were altered in ESCC tissue. We performed molecular and functional studies of the transcripts identified and investigated the mechanisms of alteration. RESULTS: We identified protein tyrosine kinase 6 (PTK6) as a transcript that was significantly down-regulated in ESCC tissues and cell lines compared with nontumor tissues or immortalized normal esophageal cell lines. The promoter of the PTK6 gene was inactivated in ESCC tissues at least in part via hypermethylation and histone deacetylation. Knockdown of PTK6 in KYSE30 ESCC cells using small hairpin RNAs increased their ability to form foci, migrate, and invade extracellular matrix in culture and form tumors in nude mice. Overexpression of PTK6 in these cells reduced their proliferation in culture and tumor formation in mice. PTK6 reduced phosphorylation of Akt and glycogen synthase kinase (GSK)3ß, leading to activation of ß-catenin. CONCLUSIONS: PTK6 was identified as a transcript that is down-regulated in human ESCC tissues via epigenetic modification at the PTK6 locus. Its product appears to regulate cell proliferation by reducing phosphorylation of Akt and GSK3ß, leading to activation of ß-catenin. Reduced levels of PTK6 promote growth of xenograft tumors in mice; it might be developed as a marker of ESCC.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Esophageal Neoplasms/enzymology , Neoplasm Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Acetylation , Adult , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , DNA Methylation , Epigenesis, Genetic , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Extracellular Matrix/metabolism , Female , G1 Phase Cell Cycle Checkpoints , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Histones/metabolism , Humans , Male , Mice , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Phosphorylation , Promoter Regions, Genetic , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Messenger/metabolism , Sequence Analysis, RNA , Signal Transduction , Transcription, Genetic , Transfection , Tumor Suppressor Proteins/genetics , beta Catenin/metabolism
19.
PLoS One ; 7(5): e36939, 2012.
Article in English | MEDLINE | ID: mdl-22590638

ABSTRACT

Whether certain Epstein-Barr virus (EBV) strains are associated with pathogenesis of nasopharyngeal carcinoma (NPC) is still an unresolved question. In the present study, EBV genome contained in a primary NPC tumor biopsy was amplified by Polymerase Chain Reaction (PCR), and sequenced using next-generation (Illumina) and conventional dideoxy-DNA sequencing. The EBV genome, designated HKNPC1 (Genbank accession number JQ009376) is a type 1 EBV of approximately 171.5 kb. The virus appears to be a uniform strain in line with accepted monoclonal nature of EBV in NPC but is heterogeneous at 172 nucleotide positions. Phylogenetic analysis with the four published EBV strains, B95-8, AG876, GD1, and GD2, indicated HKNPC1 was more closely related to the Chinese NPC patient-derived strains, GD1 and GD2. HKNPC1 contains 1,589 single nucleotide variations (SNVs) and 132 insertions or deletions (indels) in comparison to the reference EBV sequence (accession number NC007605). When compared to AG876, a strain derived from Ghanaian Burkitt's lymphoma, we found 322 SNVs, of which 76 were non-synonymous SNVs and were shared amongst the Chinese GD1, GD2 and HKNPC1 isolates. We observed 88 non-synonymous SNVs shared only by HKNPC1 and GD2, the only other NPC tumor-derived strain reported thus far. Non-synonymous SNVs were mainly found in the latent, tegument and glycoprotein genes. The same point mutations were found in glycoprotein (BLLF1 and BALF4) genes of GD1, GD2 and HKNPC1 strains and might affect cell type specific binding. Variations in LMP1 and EBNA3B epitopes and mutations in Cp (11404 C>T) and Qp (50134 G>C) found in GD1, GD2 and HKNPC1 could potentially affect CD8(+) T cell recognition and latent gene expression pattern in NPC, respectively. In conclusion, we showed that whole genome sequencing of EBV in NPC may facilitate discovery of previously unknown variations of pathogenic significance.


Subject(s)
Genome, Viral , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/isolation & purification , Nasopharyngeal Neoplasms , Viral Proteins/genetics , Adult , Base Sequence , Biopsy , Humans , Male , Molecular Sequence Data , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/virology , Sequence Analysis, DNA
20.
J Infect Dis ; 206(3): 341-51, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22615319

ABSTRACT

A scarlet fever outbreak occurred in Hong Kong in 2011. The majority of cases resulted in the isolation of Streptococcus pyogenes emm12 with multiple antibiotic resistances. Phylogenetic analysis of 22 emm12 scarlet fever outbreak isolates, 7 temporally and geographically matched emm12 non-scarlet fever isolates, and 18 emm12 strains isolated during 2005-2010 indicated the outbreak was multiclonal. Genome sequencing of 2 nonclonal scarlet fever isolates (HKU16 and HKU30), coupled with diagnostic polymerase chain reaction assays, identified 2 mobile genetic elements distributed across the major lineages: a 64.9-kb integrative and conjugative element encoding tetracycline and macrolide resistance and a 46.4-kb prophage encoding superantigens SSA and SpeC and the DNase Spd1. Phenotypic comparison of HKU16 and HKU30 with the S. pyogenes M1T1 strain 5448 revealed that HKU16 displays increased adherence to HEp-2 human epithelial cells, whereas HKU16, HKU30, and 5448 exhibit equivalent resistance to neutrophils and virulence in a humanized plasminogen murine model. However, in contrast to M1T1, the virulence of HKU16 and HKU30 was not associated with covRS mutation. The multiclonal nature of the emm12 scarlet fever isolates suggests that factors such as mobile genetic elements, environmental factors, and host immune status may have contributed to the 2011 scarlet fever outbreak.


Subject(s)
Disease Outbreaks , Scarlet Fever/epidemiology , Scarlet Fever/microbiology , Streptococcus pyogenes/classification , Streptococcus pyogenes/genetics , Adolescent , Adult , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Child , Child, Preschool , Female , Gene Expression Profiling , Gene Expression Regulation, Bacterial/physiology , Genome, Bacterial , Genomics , Hong Kong/epidemiology , Humans , Infant , Interspersed Repetitive Sequences , Male , Middle Aged , Molecular Epidemiology , Phenotype , Phylogeny , Streptococcus pyogenes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...