Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Clin Invest ; 132(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35653193

ABSTRACT

Purine nucleoside phosphorylase (PNP) enables the breakdown and recycling of guanine nucleosides. PNP insufficiency in humans is paradoxically associated with both immunodeficiency and autoimmunity, but the mechanistic basis for these outcomes is incompletely understood. Here, we identify two immune lineage-dependent consequences of PNP inactivation dictated by distinct gene interactions. During T cell development, PNP inactivation is synthetically lethal with downregulation of the dNTP triphosphohydrolase SAMHD1. This interaction requires deoxycytidine kinase activity and is antagonized by microenvironmental deoxycytidine. In B lymphocytes and macrophages, PNP regulates Toll-like receptor 7 signaling by controlling the levels of its (deoxy)guanosine nucleoside ligands. Overriding this regulatory mechanism promotes germinal center formation in the absence of exogenous antigen and accelerates disease in a mouse model of autoimmunity. This work reveals that one purine metabolism gene protects against immunodeficiency and autoimmunity via independent mechanisms operating in distinct immune lineages and identifies PNP as a potentially novel metabolic immune checkpoint.


Subject(s)
Immunologic Deficiency Syndromes , Purine-Nucleoside Phosphorylase , Animals , Autoimmunity , Humans , Mice , Purine Nucleosides , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/metabolism , T-Lymphocytes , Toll-Like Receptor 7
2.
BMC Health Serv Res ; 22(1): 309, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35255892

ABSTRACT

BACKGROUND: In Germany, the 2015 mass displacement and resulting population migration exposed regulatory and structural shortcomings with respect to refugee healthcare provision. Existing research on Germany's crisis response has largely focused on the roles played by public and health system actors. The roles and contributions of non-governmental actors operating at the grassroots level have so far been given little attention. The purpose of this qualitative study was to explore the involvement of grassroots level actors with refugee healthcare provision in Germany. METHODS: In 2017, we conducted in-depth interviews with 13 representatives of different non-governmental organizations providing refugee healthcare provision in Germany. This included humanitarian relief organizations operating at the grassroots level that offer various forms of medical and psychological care. Transcribed interview content was analyzed using both deductive and inductive coding approaches. RESULTS: Grassroots level involvement changed over the course of the reporting period. During the initial emergency response, locally organized groups supported federal states and municipalities to guarantee the provision of legally defined refugee healthcare. During the following less acute phase, grassroots organizations attended to health needs of refugees the public health system was unable to address due to legal or structural limitations. In the subsequent integration phase, grassroots organizations shifted their relief focus towards care for the most vulnerable among refugees, including rejected asylum seekers and undocumented migrants with no or limited health coverage, as well as for those suffering from mental health problems. CONCLUSION: Grassroots actors perceived their contributions largely as addressing those bottlenecks that resulted from healthcare restrictions imposed by German refugee legislation. Such bottlenecks could be addressed by offering those medical services for free that otherwise were not covered by law. Further, volunteers contributed to closing existing information and communication gaps between public actors, serving as intermediaries between public officials, healthcare providers, and refugee patients. To increase Germany's efficiency and preparedness with respect to refugee healthcare, more integrated approaches at the local level, patient-centered interpretation and implementation of refugee law, and a stronger focus on post-traumatic mental health disorders should be considered.


Subject(s)
Refugees , Transients and Migrants , Delivery of Health Care , Government Programs , Health Services Accessibility , Humans , Qualitative Research
3.
Cell Rep ; 38(2): 110236, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021095

ABSTRACT

We determine that type I interferon (IFN) response biomarkers are enriched in a subset of pancreatic ductal adenocarcinoma (PDAC) tumors; however, actionable vulnerabilities associated with IFN signaling have not been systematically defined. Integration of a phosphoproteomic analysis and a chemical genomics synergy screen reveals that IFN activates the replication stress response kinase ataxia telangiectasia and Rad3-related protein (ATR) in PDAC cells and sensitizes them to ATR inhibitors. IFN triggers cell-cycle arrest in S-phase, which is accompanied by nucleotide pool insufficiency and nucleoside efflux. In combination with IFN, ATR inhibitors induce lethal DNA damage and downregulate nucleotide biosynthesis. ATR inhibition limits the growth of PDAC tumors in which IFN signaling is driven by stimulator of interferon genes (STING). These results identify a cross talk between IFN, DNA replication stress response networks, and nucleotide metabolism while providing the rationale for targeted therapeutic interventions that leverage IFN signaling in tumors.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Interferon Type I/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , DNA Damage/drug effects , Female , Humans , Interferon Type I/pharmacology , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred NOD , Nucleotides/antagonists & inhibitors , Nucleotides/biosynthesis , Nucleotides/metabolism , Pancreatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
4.
Eur Urol Oncol ; 5(1): 100-103, 2022 02.
Article in English | MEDLINE | ID: mdl-33602654

ABSTRACT

Prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/computed tomography (CT) is an emerging imaging modality with greater sensitivity and specificity over conventional imaging for prostate cancer (PCa) staging. Using data from two prospective trials (NCT03368547 and NCT04050215), we explored predictors of overall upstaging (nodal and metastatic) by PSMA PET/CT among patients with cN0M0 National Comprehensive Cancer Network high-risk PCa on conventional imaging (n = 213). Overall, 21.1%, 8.9%, and 23.9% of patients experienced nodal, metastatic, and overall upstaging, respectively, without histologic confirmation. On multivariable analysis, Gleason grade group (GG) and percent positive core (PPC) on systematic biopsy significantly predict overall upstaging (odds ratio [OR] 2.15, 95% confidence interval [CI] 1.33-3.45; p = 0.002; and OR 1.03, 95% CI 1.01-1.04; p < 0.001). Overall upstaging was significantly more frequent among men with GG 5 disease (33.0% vs. 17.6%; p = 0.0097) and PPC ≥50% (33.0% vs 15.0%; p = 0.0020). We constructed a nomogram that predicts overall upstaging using initial prostate-specific antigen, PPC, GG, and cT stage, with coefficients estimated from a standard logistic regression model (using maximum likelihood estimation). It is internally validated with a tenfold cross-validated area under the receiver operating characteristic curve estimated at 0.74 (95% CI 0.67-0.82). In our cohort, 90% of patients who had a nomogram-estimated risk below the cutoff of 22% for overall upstaging could have been spared PSMA PET/CT as our model correctly predicted no upstaging. In other words, the predictive model only missed 10% of patients who would otherwise have benefitted from PSMA PET/CT. PATIENT SUMMARY: We analyzed predictors of overall upstaging (lymph node or/and metastasis) by prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) from conventional imaging in men with high-risk prostate cancer undergoing initial staging deemed free of disease in the lymph nodes and distant metastasis by conventional imaging techniques. We found that the pathologic grade and disease burden in a prostate biopsy are associated with upstaging. We also developed a tool that predicts the probability of upstaging according to an individual patient's characteristics. Our study may help in defining patient groups who are most likely to benefit from the addition of a PSMA PET/CT scan.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Clinical Trials as Topic , Humans , Male , Nomograms , Positron Emission Tomography Computed Tomography/methods , Prospective Studies , Prostate/diagnostic imaging , Prostate/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
5.
J Nucl Med ; 62(10): 1440-1446, 2021 10.
Article in English | MEDLINE | ID: mdl-34016732

ABSTRACT

The objective of this study was to determine prospectively the efficacy profile of 2 activity regimens of 177Lu-PSMA therapy in patients with progressive metastatic castrate-resistant prostate cancer (mCRPC): 6.0 vs. 7.4 GBq. Methods: RESIST-PC (NCT03042312) was a prospective multicenter phase 2 trial. Patients with progressive mCRPC after ≥ 1 novel androgen-axis drug, either chemotherapy naïve or postchemotherapy, with sufficient bone marrow reserve, normal kidney function, and sufficient PSMA expression by PSMA PET were eligible. Patients were randomized (1:1) into 2 activity groups (6.0 or 7.4 GBq) and received up to 4 cycles every 8 wk. The primary endpoint was the efficacy of 177Lu-PSMA measured by the prostate-specific antigen (PSA) response rate (RR) after 2 cycles (≥50% decline from baseline). Secondary endpoints included the PSA RR (≥50% decline) at any time (best response), and overall survival (OS). Results: The study was closed at enrollment of 71/200 planned patients because of sponsorship transfer. We report here the efficacy of the University of California Los Angeles cohort results only (n = 43). The PSA RRs after 2 cycles and at any time were 11/40 (28%, 95% CI 15-44), 6/13 (46%, 95% CI 19-75), and 5/27 (19%, 95% CI 6-38), and 16/43 (37%, 95% CI 23-53), 7/14 (50%, 95% CI 23-77), and 9/29 (31%, 95% CI 15-51) in the whole cohort, the 6.0-GBq group, and the 7.4-GBq group, respectively (P = 0.12 and P = 0.31). The median OS was 14.0 mo (95% CI 10.1-17.9), 15.8 (95% CI 11.8-19.4), and 13.5 (95% CI 10.0-17.0) in the whole cohort, the 6.0-GBq group, and the 7.4 GBq group, respectively (P = 0.87). OS was longer in patients who experienced a PSA decline ≥ 50% at any time than in those who did not: median, 20.8 versus 10.8 mo (P = 0.005). Conclusion: In this prospective phase 2 trial of 177Lu-PSMA for mCRPC, the median OS was 14 mo. Despite the heterogeneous study population and the premature study termination, the efficacy profile of 177Lu-PSMA appeared to be favorable and comparable with both activity regimens (6.0 vs. 7.4 GBq). Results justify confirmation with real-world data matched-pair analysis and further clinical trials to refine and optimize the 177Lu-PSMA therapy administration scheme to improve tumor radiation dose delivery and efficacy.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Aged , Cohort Studies , Dipeptides , Heterocyclic Compounds, 1-Ring , Humans , Male , Middle Aged , Prostate-Specific Antigen
6.
RSC Med Chem ; 11(3): 392-410, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-33479645

ABSTRACT

A potent class of isoquinoline-based α-N-heterocyclic carboxaldehyde thiosemicarbazone (HCT) compounds has been rediscovered; based upon this scaffold, three series of antiproliferative agents were synthesized through iterative rounds of methylation and fluorination modifications, with anticancer activities being potentiated by physiologically relevant levels of copper. The lead compound, HCT-13, was highly potent against a panel of pancreatic, small cell lung carcinoma, prostate cancer, and leukemia models, with IC50 values in the low-to-mid nanomolar range. Density functional theory (DFT) calculations showed that fluorination at the 6-position of HCT-13 was beneficial for ligand-copper complex formation, stability, and ease of metal-center reduction. Through a chemical genomics screen, we identify DNA damage response/replication stress response (DDR/RSR) pathways, specifically those mediated by ataxia-telangiectasia and Rad3-related protein kinase (ATR), as potential compensatory mechanism(s) of action following HCT-13 treatment. We further show that the cytotoxicity of HCT-13 is copper-dependent, that it promotes mitochondrial electron transport chain (mtETC) dysfunction, induces production of reactive oxygen species (ROS), and selectively depletes guanosine nucleotide pools. Lastly, we identify metabolic hallmarks for therapeutic target stratification and demonstrate the in vivo efficacy of HCT-13 against aggressive models of acute leukemias in mice.

7.
Cell Chem Biol ; 27(2): 197-205.e6, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31734178

ABSTRACT

Biosynthesis of the pyrimidine nucleotide uridine monophosphate (UMP) is essential for cell proliferation and is achieved by the activity of convergent de novo and salvage metabolic pathways. Here we report the development and application of a cell-based metabolic modifier screening platform that leverages the redundancy in pyrimidine metabolism for the discovery of selective UMP biosynthesis modulators. In evaluating a library of protein kinase inhibitors, we identified multiple compounds that possess nucleotide metabolism modifying activity. The JNK inhibitor JNK-IN-8 was found to potently inhibit nucleoside transport and engage ENT1. The PDK1 inhibitor OSU-03012 (also known as AR-12) and the RAF inhibitor TAK-632 were shown to inhibit the therapeutically relevant de novo pathway enzyme DHODH and their affinities were unambiguously confirmed through in vitro assays and co-crystallization with human DHODH.


Subject(s)
Equilibrative Nucleoside Transporter 1/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyrimidine Nucleosides/metabolism , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Drug Design , Equilibrative Nucleoside Transporter 1/metabolism , Humans , Molecular Dynamics Simulation , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/chemistry
8.
Lancet Oncol ; 20(9): 1286-1294, 2019 09.
Article in English | MEDLINE | ID: mdl-31375469

ABSTRACT

BACKGROUND: National Comprehensive Cancer Network guidelines consider 18F-fluciclovine PET-CT for prostate cancer biochemical recurrence localisation after radical prostatectomy, whereas European Association of Urology guidelines recommend prostate-specific membrane antigen (PSMA) PET-CT. To the best of our knowledge, no prospective head-to-head comparison between these tests has been done so far. The aim of this study was to compare prospectively paired 18F-fluciclovine and PSMA PET-CT scans for localising biochemical recurrence of prostate cancer after radical prostatectomy in patients with low prostate-specific antigen (PSA) concentrations (<2·0 ng/mL). METHODS: This was a prospective, single-centre, open-label, single-arm comparative study done at University of California Los Angeles (Los Angeles, CA, USA). Patients older than 18 years of age with prostate cancer biochemical recurrence after radical prostatectomy and PSA levels ranging from 0·2 to 2·0 ng/mL without any prior salvage therapy and with a Karnofsky performance status of at least 50 were eligible. Patients underwent 18F-fluciclovine (reference test) and PSMA (index test) PET-CT scans within 15 days. Detection rate of biochemical recurrence at the patient level and by anatomical region was the primary endpoint. A statistical power analysis demonstrated that a sample size of 50 patients was needed to show a 22% difference in detection rates in favour of PSMA (test for superiority). Each PET scan was interpreted by three independent masked readers and a consensus majority interpretation was generated (two vs one) to determine positive findings. This study is registered with ClinicalTrials.gov, number NCT02940262, and is complete. FINDINGS: Between Feb 26, 2018, and Sept 20, 2018, 143 patients were screened for eligibility, of whom 50 patients were enrolled into the study. Median follow-up was 8 months (IQR 7-9). The primary endpoint was met; detection rates were significantly lower with 18F-fluciclovine PET-CT (13 [26%; 95% CI 15-40] of 50) than with PSMA PET-CT (28 [56%; 41-70] of 50), with an odds ratio (OR) of 4·8 (95% CI 1·6-19·2; p=0·0026) at the patient level; in the subanalysis of the pelvic nodes region (four [8%; 2-19] with 18F-fluciclovine vs 15 [30%; 18-45] with PSMA PET-CT; OR 12·0 [1·8-513·0], p=0·0034); and in the subanalysis of any extrapelvic lesions (none [0%; 0-6] vs eight [16%; 7-29]; OR non-estimable [95% CI non-estimable], p=0·0078). INTERPRETATION: With higher detection rates, PSMA should be the PET tracer of choice when PET-CT imaging is considered for subsequent treatment management decisions in patients with prostate cancer and biochemical recurrence after radical prostatectomy and low PSA concentrations (≤2·0 ng/mL). Further research is needed to investigate whether higher detection rates translate into improved oncological outcomes. FUNDING: None.


Subject(s)
Carboxylic Acids/administration & dosage , Cyclobutanes/administration & dosage , Edetic Acid/analogs & derivatives , Neoplasm Recurrence, Local/diagnostic imaging , Oligopeptides/administration & dosage , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Aged , Contrast Media/administration & dosage , Edetic Acid/administration & dosage , Gallium Isotopes , Gallium Radioisotopes , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/surgery , Prospective Studies , Prostate-Specific Antigen/blood , Prostatectomy/methods , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery
9.
Circulation ; 115(3): 377-86, 2007 Jan 23.
Article in English | MEDLINE | ID: mdl-17224478

ABSTRACT

BACKGROUND: Visualizing early changes in valvular cell functions in vivo may predict the future risk and identify therapeutic targets for prevention of aortic valve stenosis. METHODS AND RESULTS: To test the hypotheses that (1) aortic stenosis shares a similar pathogenesis to atherosclerosis and (2) molecular imaging can detect early changes in aortic valve disease, we used in vivo a panel of near-infrared fluorescence imaging agents to map endothelial cells, macrophages, proteolysis, and osteogenesis in aortic valves of hypercholesterolemic apolipoprotein E-deficient mice (30 weeks old, n=30). Apolipoprotein E-deficient mice with no probe injection (n=10) and wild-type mice (n=10) served as controls. Valves of apolipoprotein E-deficient mice contained macrophages, were thicker than wild-type mice (P<0.001), and showed early dysfunction detected by MRI in vivo. Fluorescence imaging detected uptake of macrophage-targeted magnetofluorescent nanoparticles (24 hours after injection) in apolipoprotein E-deficient valves, which was negligible in controls (P<0.01). Valvular macrophages showed proteolytic activity visualized by protease-activatable near-infrared fluorescence probes. Ex vivo magnetic resonance imaging enhanced with vascular cell adhesion molecule-1-targeted nanoparticles detected endothelial activation in valve commissures, the regions of highest mechanical stress. Osteogenic near-infrared fluorescence signals colocalized with alkaline phosphatase activity and expression of osteopontin, osteocalcin, Runx2/Cbfa1, Osterix, and Notch1 despite no evidence of calcium deposits, which suggests ongoing active processes of osteogenesis in inflamed valves. Notably, the aortic wall contained advanced calcification. Quantitative image analysis correlated near-infrared fluorescence signals with immunoreactive vascular cell adhesion molecule-1, macrophages, and cathepsin-B (P<0.001). CONCLUSIONS: Molecular imaging can detect in vivo the key cellular events in early aortic valve disease, including endothelial cell and macrophage activation, proteolytic activity, and osteogenesis.


Subject(s)
Aortic Valve Stenosis/physiopathology , Atherosclerosis/physiopathology , Magnetic Resonance Imaging/methods , Osteogenesis/physiology , Peptide Hydrolases/physiology , Spectroscopy, Near-Infrared/methods , Animals , Aortic Valve Stenosis/pathology , Apolipoproteins E/genetics , Apolipoproteins E/physiology , Atherosclerosis/pathology , Calcinosis/pathology , Calcinosis/physiopathology , Calcium/metabolism , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Enzyme Activation/physiology , Fibroblasts/pathology , Fibroblasts/physiology , Gene Expression Profiling , Hypercholesterolemia/pathology , Hypercholesterolemia/physiopathology , Macrophage Activation/physiology , Macrophages/pathology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/pathology , Osteoblasts/physiology , Predictive Value of Tests
10.
Circulation ; 113(19): 2301-12, 2006 May 16.
Article in English | MEDLINE | ID: mdl-16682613

ABSTRACT

BACKGROUND: Studies to define the overall contribution of lymphocytes to lesion formation in atherosclerosis-susceptible mice have demonstrated relatively subtle effects; the use of lymphocyte-deficient mice, however, compromises both the effector and regulatory arms of the immune system. Here, we tested the hypothesis that deletion of CXCL10 (IP-10), a chemokine specific for effector T cells that has been localized within atherosclerotic lesions, would significantly inhibit atherogenesis. METHODS AND RESULTS: Compound deficient Apoe(-/-)/Cxcl10(-/-) mice fed a Western-style diet for either 6 or 12 weeks demonstrated significant reductions in atherogenesis as compared with Apoe(-/-) controls, as assessed by both aortic en face and cross-sectional analyses. Immunohistochemical studies revealed a decrease in the accumulation of CD4+ T cells, whereas quantitative polymerase chain reaction analysis of lesion-rich aortic arches demonstrated a marked reduction in mRNA for CXCR3, the CXCL10 chemokine receptor. Although overall T-cell accumulation was diminished significantly, we found evidence to suggest that regulatory T-cell (Treg) numbers and activity were enhanced, as assessed by increased message for the Treg-specific marker Foxp3, as well as increases in immunostaining for the Treg-associated cytokines interleukin-10 and transforming growth factor-beta1. We also documented naturally occurring Treg cells in human atherosclerotic lesions. CONCLUSIONS: We provide novel evidence for a functional role for the effector T-cell chemoattractant CXCL10 in atherosclerotic lesion formation by modulating the local balance of the effector and regulatory arms of the immune system.


Subject(s)
Atherosclerosis/physiopathology , Chemokines, CXC/physiology , Coronary Artery Disease/pathology , Coronary Artery Disease/physiopathology , T-Lymphocytes/physiology , Animals , Aorta/pathology , Apolipoproteins E/analysis , Apolipoproteins E/deficiency , Apolipoproteins E/physiology , Atherosclerosis/pathology , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/chemistry , CD4-Positive T-Lymphocytes/physiology , Chemokine CXCL10 , Chemokines, CXC/analysis , Chemokines, CXC/deficiency , Chemokines, CXC/genetics , Coronary Artery Disease/etiology , Coronary Vessels/pathology , Flow Cytometry , Forkhead Transcription Factors/analysis , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/physiology , Immunohistochemistry , Interleukin-10/analysis , Interleukin-10/genetics , Interleukin-10/physiology , Mice , Mice, Mutant Strains , Polymerase Chain Reaction , RNA, Messenger/analysis , RNA, Messenger/genetics , Receptors, CXCR3 , Receptors, Chemokine/analysis , Receptors, Chemokine/genetics , Receptors, Chemokine/physiology , Signal Transduction/physiology , T-Lymphocytes/chemistry , Transforming Growth Factor beta/analysis , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/physiology , Transforming Growth Factor beta1
SELECTION OF CITATIONS
SEARCH DETAIL
...