Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
J Virol ; 97(8): e0078123, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37565748

ABSTRACT

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.


Subject(s)
Epstein-Barr Virus Infections , Herpesviridae Infections , Herpesvirus 1, Human , Ribonucleotide Reductases , Humans , Infant, Newborn , Cytidine Deaminase/metabolism , Cytomegalovirus/genetics , DNA Replication , DNA, Viral/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 4, Human/genetics , Immediate-Early Proteins/metabolism , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Viral Proteins/metabolism , Virus Replication
2.
iScience ; 26(5): 106628, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37192971

ABSTRACT

This study was undertaken to investigate the role of CD4+FoxP3+ regulatory T cells (Tregs) in regulating neuroinflammation during viral Ag-challenge and re-challenge. CD8+ lymphocytes persisting within tissues are designated tissue-resident memory T cells (TRM), within brain: bTRM. Reactivation of bTRM with T cell epitope peptides generates rapid antiviral recall, but repeated stimulation leads to cumulative dysregulation of microglial activation, proliferation, and prolonged neurotoxic mediator production. Here, we show Tregs were recruited into murine brains following prime-CNS boost, but displayed altered phenotypes following repeated Ag-challenge. In response to repeated Ag, brain Tregs (bTregs) displayed inefficient immunosuppressive capacity, along with reduced expression of suppression of tumorigenicity 2 (ST2) and amphiregulin (Areg). Ex vivo Areg treatment revealed reduced production of neurotoxic mediators such as iNOS, IL-6, and IL-1ß, and decreased microglial activation and proliferation. Taken together, these data indicate bTregs display an unstable phenotype and fail to control reactive gliosis in response to repeated Ag-challenge.

3.
bioRxiv ; 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36778493

ABSTRACT

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses EBV and KSHV and the alpha-herpesviruses HSV-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting involvement of an immediate early or early (IE-E) viral protein. In support of this mechanism, cycloheximide treatment of HCMV-infected cells prevents the expression of viral proteins and simultaneously blocks APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which is a viral DNA synthesis inhibitor affecting late protein expression, still permits A3B relocalization. These results combine to show that the beta-herpesvirus HCMV uses a fundamentally different, RNR-independent molecular mechanism to antagonize APOBEC3B. Importance: Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses in order to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.

4.
Cells ; 11(18)2022 09 09.
Article in English | MEDLINE | ID: mdl-36139401

ABSTRACT

Regulatory T-cells (Tregs) play pivotal roles during infection, cancer, and autoimmunity. In our previous study, we demonstrated a role for the PD-1:PD-L1 pathway in controlling cytolytic responses of CD8+ T lymphocytes against microglial cells presenting viral peptides. In this study, we investigated the role of Tregs in suppressing CD8+ T-cell-mediated cytotoxicity against primary microglial cells. Using in vitro cytotoxicity assays and flow cytometry, we demonstrated a role for Tregs in suppressing antigen-specific cytotoxic T-lymphocyte (CTL) responses against microglia loaded with a model peptide (SIINFEKL). We went on to show a significant decrease in the frequency of IFN-γ- and TNF-producing CD8+ T-cells when cultured with Tregs. Interestingly, a significant increase in the frequency of granzyme B- and Ki67-producing CTLs was observed. We also observed a significant decrease in the production of interleukin (IL)-6 by microglia. On further investigation, we found that Tregs significantly reduced MHC class 1 (MHC-1) expression on IFN-γ-treated microglial cells. Taken together, these studies demonstrate an immunosuppressive role for Tregs on CTL responses generated against primary microglia. Hence, modulation of Treg cell activity in combination with negative immune checkpoint blockade may stimulate anti-viral T-cell responses to more efficiently clear viral infection from microglial cell reservoirs.


Subject(s)
T-Lymphocytes, Cytotoxic , T-Lymphocytes, Regulatory , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , Granzymes/metabolism , Immune Checkpoint Inhibitors , Interferon-gamma/metabolism , Interleukins/metabolism , Ki-67 Antigen/metabolism , Microglia/metabolism , Programmed Cell Death 1 Receptor/metabolism
5.
Brain Sci ; 11(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34827481

ABSTRACT

The role of select pro- and anti-inflammatory mediators in driving microglial cell polarization into classically (M1), or alternatively, (M2) activated states, as well as the subsequent differential responses of these induced phenotypes, was examined. Expression of PD-L1, MHC-II, MHC-I, arginase 1 (Arg-1), and inducible nitric oxide synthase (iNOS) was assessed using multi-color flow cytometry. We observed that both pro- and anti-inflammatory mediators induced PD-L1 expression on non-polarized microglia. Moreover, IFN-γ stimulated significant MHC class I and II expression on these cells. Interestingly, we observed that only IL-4 treatment induced Arg-1 expression, indicating M2 polarization. These M2 cells were refractory to subsequent depolarization and maintained their alternatively activated state. Furthermore, PD-L1 expression was significantly induced on these M2-polarized microglia after treatment with pro-inflammatory mediators, but not anti-inflammatory cytokines. In addition, we observed that only LPS induced iNOS expression in microglial cells, indicating M1 polarization. Furthermore, IFN-γ significantly increased the percentage of M1-polarized microglia expressing iNOS. Surprisingly, when these M1-polarized microglia were treated with either IL-6 or other anti-inflammatory cytokines, they returned to their non-polarized state, as demonstrated by significantly reduced expression of iNOS. Taken together, these results demonstrate differential responses of microglial cells to mediators present in dissimilar microenvironments.

6.
Front Cell Neurosci ; 15: 686340, 2021.
Article in English | MEDLINE | ID: mdl-34447297

ABSTRACT

Upon reactivation of quiescent neurotropic viruses antigen (Ag)-specific brain resident-memory CD8+ T-cells (bTRM) may respond to de novo-produced viral Ag through the rapid release of IFN-γ, which drives subsequent interferon-stimulated gene expression in surrounding microglia. Through this mechanism, a small number of adaptive bTRM may amplify responses to viral reactivation leading to an organ-wide innate protective state. Over time, this brain-wide innate immune activation likely has cumulative neurotoxic and neurocognitive consequences. We have previously shown that HIV-1 p24 Ag-specific bTRM persist within the murine brain using a heterologous prime-CNS boost strategy. In response to Ag restimulation, these bTRM display rapid and robust recall responses, which subsequently activate glial cells. In this study, we hypothesized that repeated challenges to viral antigen (Ag) (modeling repeated episodes of viral reactivation) culminate in prolonged reactive gliosis and exacerbated neurotoxicity. To address this question, mice were first immunized with adenovirus vectors expressing the HIV p24 capsid protein, followed by a CNS-boost using Pr55Gag/Env virus-like particles (HIV-VLPs). Following the establishment of the bTRM population [>30 days (d)], prime-CNS boost animals were then subjected to in vivo challenge, as well as re-challenge (at 14 d post-challenge), using the immunodominant HIV-1 AI9 CD8+ T-cell epitope peptide. In these studies, Ag re-challenge resulted in prolonged expression of microglial activation markers and an increased proliferative response, longer than the challenge group. This continued expression of MHCII and PD-L1 (activation markers), as well as Ki67 (proliferative marker), was observed at 7, 14, and 30 days post-AI9 re-challenge. Additionally, in vivo re-challenge resulted in continued production of inducible nitric oxide synthase (iNOS) with elevated levels observed at 7, 14 and 30 days post re-challenge. Interestingly, iNOS expression was significantly lower among challenged animals when compared to re-challenged groups. Furthermore, in vivo specific Ag re-challenge produced lower levels of arginase (Arg)-1 when compared with the challenged group. Taken together, these results indicate that repeated Ag-specific stimulation of adaptive immune responses leads to cumulative dysregulated microglial cell activation.

7.
Pediatr Res ; 89(4): 838-845, 2021 03.
Article in English | MEDLINE | ID: mdl-32555536

ABSTRACT

BACKGROUND: Cytomegalovirus (CMV) is a leading infectious cause of neurologic deficits, both in the settings of congenital and perinatal infection, but few animal models exist to study neurodevelopmental outcomes. This study examined the impact of neonatal guinea pig CMV (GPCMV) infection on spatial learning and memory in a Morris water maze (MWM) model. METHODS: Newborn pups were challenged intraperitoneally (i.p.) with a pathogenic red fluorescent protein-tagged GPCMV, or sham inoculated. On days 15-19 post infection (p.i.), pups were tested in the MWM. Viral loads were measured in blood and tissue by quantitative PCR (qPCR), and brain samples collected at necropsy were examined by histology and immunohistochemistry. RESULTS: Viremia (DNAemia) was detected at day 3 p.i. in 7/8 challenged animals. End-organ dissemination was observed, by qPCR, in the lung, liver, and spleen. CD4-positive (CD4+) and CD8-positive (CD8+) T cell infiltrates were present in brains of challenged animals, particularly in periventricular and hippocampal regions. Reactive gliosis and microglial nodules were observed. Statistically significant spatial learning and memory deficits were observed by MWM, particularly for total maze distance traveled (p < 0.0001). CONCLUSION: Neonatal GPCMV infection in guinea pigs results in cognitive defects demonstrable by the MWM. This neonatal guinea pig challenge model can be exploited for studying antiviral interventions. IMPACT: CMV impairs neonatal neurocognition and memory in the setting of postnatal infection. The MWM can be used to examine memory and learning in a guinea pig model of neonatal CMV infection. CD4+ and CD8+ T cells infiltrate the brain following neonatal CMV challenge. This article demonstrates that the MWM can be used to evaluate memory and learning after neonatal GPCMV challenge. The guinea pig can be used to examine central nervous system pathology caused by neonatal CMV infection and this attribute may facilitate the study of vaccines and antivirals.


Subject(s)
Cytomegalovirus/metabolism , Animals , Animals, Newborn , Antibodies, Viral/metabolism , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Fibroblasts/metabolism , Guinea Pigs , Luminescent Proteins/metabolism , Maze Learning , Neurology/methods , Viral Load , Red Fluorescent Protein
8.
Glia ; 69(4): 858-871, 2021 04.
Article in English | MEDLINE | ID: mdl-33128485

ABSTRACT

Microglial cells are the main reservoir for HIV-1 within the brain and potential exists for negative immune checkpoint blockade therapies to purge this viral reservoir. Here, we investigated cytolytic responses of CD8+ T lymphocytes against microglia loaded with peptide epitopes. Initially, flow cytometric analysis demonstrated efficient killing of HIV-1 p24 AI9 or YI9 peptide-loaded splenocytes in MHC-matched recipients. Cytolytic killing of microglia was first demonstrated using ovalbumin (OVA) as a model antigen for in vitro cytotoxic T lymphocyte (CTL) assays. Peptide-loaded primary microglia obtained from programmed death ligand (PD-L) 1 knockout (KO) animals showed significantly more killing than cells from wild-type (WT) animals when co-cultured with activated CD8+ T-cells isolated from rAd5-OVA primed animals. Moreover, when peptide loaded-microglial cells from WT animals were treated with neutralizing α-PD-L1 Ab, significantly more killing was observed compared to either untreated or IgG isotype-treated cells. Most importantly, significantly increased in vivo killing of HIV-1 p24 YI9 peptide-loaded microglia from PD-L1 KO animals, as well as AI9 peptide-loaded BALB/c microglial cells treated with α-PD-L1, was observed within brains of rAd5-p24 primed-CNS boosted C57BL/6 or BALB/c mice, respectively. Finally, ex vivo responses of brain CD8+ T-cells in response to AI9 stimulation showed significantly increased IFN-γ and IL-2 production when treated with α-PD-1 Abs. Greater proliferation of CD8+ T-cells from the brain was also observed following blockade. Taken together, these studies demonstrate that PD-L1 induction on microglia restrains CTL responses and indicate that immune checkpoint blockade targeting this pathway may be beneficial in clearing viral brain reservoirs.


Subject(s)
B7-H1 Antigen , T-Lymphocytes, Cytotoxic , Animals , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microglia , Peptides/pharmacology , Programmed Cell Death 1 Receptor
9.
iScience ; 20: 512-526, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31655062

ABSTRACT

HIV-associated neurocognitive disorders (HAND) persist even during effective combination antiretroviral therapy (cART). Although the cause of HAND is unknown, studies link chronic immune activation, neuroinflammation, and cerebrospinal fluid viral escape to disease progression. In this study, we tested the hypothesis that specific, recall immune responses from brain-resident memory T cells (bTRM) could activate glia and induce neurotoxic mediators. To address this question, we developed a heterologous prime-central nervous system (CNS) boost strategy in mice. We observed that the murine brain became populated with long-lived CD8+ bTRM, some being specific for an immunodominant Gag epitope. Recall stimulation using HIV-1 AI9 peptide administered in vivo resulted in microglia displaying elevated levels of major histocompatibility complex class II and programmed death-ligand 1, and demonstrating tissue-wide reactive gliosis. Immunostaining further confirmed this glial activation. Taken together, these results indicate that specific, adaptive recall responses from bTRM can induce reactive gliosis and production of neurotoxic mediators.

10.
Pain Res Manag ; 2019: 1260353, 2019.
Article in English | MEDLINE | ID: mdl-31354896

ABSTRACT

The most common neurological complication in patients receiving successful combination antiretroviral therapy (cART) is peripheral neuropathic pain. Data show that distal symmetric polyneuropathy (DSP) also develops along with murine acquired immunodeficiency syndrome (MAIDS) after infection with the LP-BM5 murine retrovirus mixture. Links between cannabinoid receptor 2 (CB2R) and peripheral neuropathy have been established in animal models using nerve transection, chemotherapy-induced pain, and various other stimuli. Diverse types of neuropathic pain respond differently to standard drug intervention, and little is currently known regarding the effects of modulation through CB2Rs. In this study, we evaluated whether treatment with the exogenous synthetic CB2R agonists JWH015, JWH133, Gp1a, and HU308 controls neuropathic pain and neuroinflammation in animals with chronic retroviral infection. Hind-paw mechanical hypersensitivity in CB2R agonist-treated versus untreated animals was assessed using the MouseMet electronic von Frey system. Multicolor flow cytometry was used to determine the effects of CB2R agonists on macrophage activation and T-lymphocyte infiltration into dorsal root ganglia (DRG) and lumbar spinal cord (LSC). Results demonstrated that, following weekly intraperitoneal injections starting at 5 wk p.i., JWH015, JWH133, and Gp1a, but not HU308 (5 mg/kg), significantly ameliorated allodynia when assessed 2 h after ligand injection. However, these same agonists (2x/wk) did not display antiallodynic effects when mechanical sensitivity was assessed 24 h after ligand injection. Infection-induced macrophage activation and T-cell infiltration into the DRG and LSC were observed at 12 wk p.i., but this neuroinflammation was not affected by treatment with any CB2R agonist. Activation of JAK/STAT3 has been shown to contribute to development of neuropathic pain in the LSC and pretreatment of primary murine microglia (2 h) with JWH015-, JWH133-, or Gp1a-blocked IFN-gamma-induced phosphorylation of STAT1 and STAT3. Taken together, these data show that CB2R agonists demonstrate acute, but not long-term, antiallodynic effects on retrovirus infection-induced neuropathic pain.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Neuralgia/virology , Retroviridae Infections/complications , Animals , Cannabinoids/pharmacology , Disease Models, Animal , Humans , Hyperalgesia/virology , Indenes/pharmacology , Indoles/pharmacology , Male , Mice , Pyrazoles/pharmacology , Retroviridae
11.
Int J Mol Sci ; 20(7)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987269

ABSTRACT

The programmed death (PD)-1/PD-L1 pathway is a well-recognized negative immune checkpoint that results in functional inhibition of T-cells. Microglia, the brain-resident immune cells are vital for pathogen detection and initiation of neuroimmune responses. Moreover, microglial cells and astrocytes govern the activity of brain-infiltrating antiviral T-cells through upregulation of PD-L1 expression. While T-cell suppressive responses within brain are undoubtedly beneficial to the host, preventing cytotoxic damage to this vital organ, establishment of a prolonged anti-inflammatory milieu may simultaneously lead to deficiencies in viral clearance. An immune checkpoint blockade targeting the PD-1: PD-L1 (B7-H1; CD274) axis has revolutionized contemporary treatment for a variety of cancers. However, the therapeutic potential of PD1: PD-L1 blockade therapies targeting viral brain reservoirs remains to be determined. For these reasons, it is key to understand both the detrimental and protective functions of this signaling pathway within the brain. This review highlights how glial cells use PD-L1 expression to modulate T-cell effector function and limit detrimental bystander damage, while still retaining an effective defense of the brain.


Subject(s)
Central Nervous System/metabolism , Neuroglia/metabolism , Programmed Cell Death 1 Receptor/metabolism , Animals , Central Nervous System/cytology , Humans , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
12.
Viral Immunol ; 32(1): 48-54, 2019.
Article in English | MEDLINE | ID: mdl-30230418

ABSTRACT

Activated CD8+ lymphocytes infiltrate the brain in response to many viral infections; where some remain stationed long term as memory T cells. Brain-resident memory T cells (bTRM) are positioned to impart immediate defense against recurrent or reactivated infection. The cytokine and chemokine milieu present within a tissue is critical for TRM generation and retention; and reciprocal interactions exist between brain-resident glia and bTRM. High concentrations of TGF-ß are found within brain and this cytokine has been shown to induce CD103 (integrin αeß7) expression. The majority of T cells persisting within brain express CD103, which aids in retention through interaction with E-cadherin. Likewise, cytokines produced by T cells also modulate microglia. The anti-inflammatory cytokine IL-4 has been shown to preferentially polarize microglial cells toward an M2 phenotype, with a corresponding increase in E-cadherin expression. These findings demonstrate that the brain microenvironment, both during and following inflammation, prominently contributes to the role of CD103 in T cell persistence. Further evidence shows that microglia, and astrocytes, upregulate programmed death (PD) ligand 1 during neuroinflammation, likely to limit neuropathology, and the PD-1: PD-L1 pathway also aids in bTRM generation and retention. Upon reactivation of quiescent neurotropic viruses, bTRM may respond to small amounts of de novo-produced viral antigen by rapidly releasing IFN-γ, resulting in interferon-stimulated gene expression in surrounding glia, thereby amplifying activation of a small number of adaptive immune cells into an organ-wide innate antiviral response. While advantageous from an antiviral perspective; over time, recall response-driven, organ-wide innate immune activation likely has cumulative neurotoxic and neurocognitive consequences.


Subject(s)
Brain/immunology , Brain/virology , T-Lymphocytes/immunology , Virus Diseases/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , CD8-Positive T-Lymphocytes/immunology , Cadherins/genetics , Cadherins/immunology , Cytokines/immunology , Humans , Immunologic Memory , Integrin alpha Chains/genetics , Integrin alpha Chains/immunology , Interleukin-4/immunology , Mice , Microglia/immunology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Transforming Growth Factor beta/immunology
13.
J Neuroinflammation ; 15(1): 66, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29506535

ABSTRACT

BACKGROUND: Peripheral neuropathy is currently the most common neurological complication in HIV-infected individuals, occurring in 35-50% of patients undergoing combination anti-retroviral therapy. Data have shown that distal symmetric polyneuropathy develops in mice by 6 weeks following infection with the LP-BM5 retrovirus mixture. Previous work from our laboratory has demonstrated that glial cells modulate antiviral T-cell effector responses through the programmed death (PD)-1: PD-L1 pathway, thereby limiting the deleterious consequences of unrestrained neuroinflammation. METHODS: Using the MouseMet electronic von Frey system, we assessed hind-paw mechanical hypersensitivity in LP-BM5-infected wild-type (WT) and PD-1 KO animals. Using multi-color flow cytometry, we quantitatively assessed cellular infiltration and microglial activation. Using real-time RT-PCR, we assessed viral load, expression of IFN-γ, iNOS, and MHC class II. Using western blotting, we measured protein nitrosylation within the lumbar spinal cord (LSC) and dorsal root ganglion (DRG). Histochemical staining was performed to analyze the presence of CD3, ionized calcium binding adaptor molecule (Iba)-1, MHCII, nitrotyrosine, isolectin B4 (IB4) binding, and neurofilament 200 (NF200). Statistical analyses were carried out using graphpad prism. RESULTS: Hind-paw mechanical hypersensitivity observed in LP-BM5-infected animals was associated with significantly increased lymphocyte infiltration into the spinal cord and DRG. We also observed elevated expression of IFN-γ (in LSC and DRG) and MHC II (on resident microglia in LSC). We detected elevated levels of 3-nitrotyrosine within the LSC and DRG of LP-BM5-infected animals, an indicator of nitric oxide (NO)-induced protein damage. Moreover, we observed 3-nitrotyrosine in both small (IB4+) and large (NF200+) DRG sensory neurons. Additionally, infected PD-1 KO animals displayed significantly greater mechanical hypersensitivity than WT or uninfected mice at 4 weeks post-infection (p.i.). Accelerated onset of hind-paw hypersensitivity in PD-1 KO animals was associated with significantly increased infiltration of CD4+ and CD8+ T lymphocytes, macrophages, and microglial activation at early time points. Importantly, we also observed elevated levels of 3-nitrotyrosine and iNOS in infected PD-1 KO animals when compared with WT animals. CONCLUSIONS: Results reported here connect peripheral immune cell infiltration and reactive gliosis with nitrosative damage. These data may help elucidate how retroviral infection-induced neuroinflammatory networks contribute to nerve damage and neuropathic pain.


Subject(s)
Neuralgia/etiology , Retroviridae Infections/complications , Animals , Antigens, CD/metabolism , Disease Models, Animal , Ganglia, Spinal , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Interferon-gamma/metabolism , Leukocytes , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/pathology , Neuralgia/virology , Nitric Oxide Synthase Type II , Programmed Cell Death 1 Receptor/deficiency , Programmed Cell Death 1 Receptor/genetics , RNA, Messenger , Retroviridae/pathogenicity , Spinal Cord/pathology
14.
Immun Inflamm Dis ; 6(2): 332-344, 2018 06.
Article in English | MEDLINE | ID: mdl-29602245

ABSTRACT

INTRODUCTION: Previous work from our laboratory has demonstrated in vivo persistence of CD103+ CD69+ brain resident memory CD8+ T-cells (bTRM ) following viral infection, and that the PD-1: PD-L1 pathway promotes development of these TRM cells within the brain. Although glial cells express low basal levels of PD-L1, its expression is upregulated upon IFN-γ-treatment, and they have been shown to modulate antiviral T-cell effector responses through the PD-1: PD-L1 pathway. METHODS: We performed flow cytometric analysis of cells from co-cultures of mixed glia and CD8+ T-cells obtained from wild type mice to investigate the role of glial cells in the development of bTRM . RESULTS: In this study, we show that interactions between reactive glia and anti-CD3 Ab-stimulated CD8+ T-cells promote development of CD103+ CD69+ CD8+ T-cells through engagement of the PD-1: PD-L1 pathway. These studies used co-cultures of primary murine glial cells obtained from WT animals along with CD8+ T-cells obtained from either WT or PD-1 KO mice. We found that αCD3 Ab-stimulated CD8+ T-cells from WT animals increased expression of CD103 and CD69 when co-cultured with primary murine glial cells. In contrast, significantly reduced expression of CD103 and CD69 was observed using CD8+ T-cells from PD-1 KO mice. We also observed that reactive glia promoted high levels of CD127, a marker of memory precursor effector cells (MPEC), on CD69+ CD8+ T-cells, which promotes development of TRM cells. Interestingly, results obtained using T-cells from PD-1 KO animals showed significantly reduced expression of CD127 on CD69+ CD8+ cells. Additionally, blocking of glial PD-L1 resulted in decreased expression of CD103, along with reduced CD127 on CD69+ CD8+ T-cells. CONCLUSIONS: Taken together, these results demonstrate a role for activated glia in promoting development of bTRM through the PD-1: PD-L1 pathway.


Subject(s)
B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Neuroglia/immunology , Programmed Cell Death 1 Receptor/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , B7-H1 Antigen/immunology , Brain/cytology , Brain/immunology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Central Nervous System Viral Diseases/immunology , Central Nervous System Viral Diseases/virology , Coculture Techniques , Disease Models, Animal , Female , Flow Cytometry , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Humans , Integrin alpha Chains/metabolism , Lectins, C-Type/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Muromegalovirus/immunology , Neuroglia/metabolism , Primary Cell Culture , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Signal Transduction/immunology
15.
J Neuroinflammation ; 14(1): 82, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28407741

ABSTRACT

BACKGROUND: Previous work from our laboratory has demonstrated that during acute viral brain infection, glial cells modulate antiviral T cell effector responses through the PD-1: PD-L1 pathway, thereby limiting the deleterious consequences of unrestrained neuroinflammation. Here, we evaluated the PD-1: PD-L1 pathway in development of brain-resident memory T cells (bTRM) following murine cytomegalovirus (MCMV) infection. METHODS: Flow cytometric analysis of immune cells was performed at 7, 14, and 30 days post-infection (dpi) to assess the shift of brain-infiltrating CD8+ T cell populations from short-lived effector cells (SLEC) to memory precursor effector cells (MPEC), as well as generation of bTRMs. RESULTS: In wild-type (WT) animals, we observed a switch in the phenotype of brain-infiltrating CD8+ T cell populations from KLRG1+ CD127- (SLEC) to KLRG1- CD127+ (MPEC) during transition from acute through chronic phases of infection. At 14 and 30 dpi, the majority of CD8+ T cells expressed CD127, a marker of memory cells. In contrast, fewer CD8+ T cells expressed CD127 within brains of infected, PD-L1 knockout (KO) animals. Notably, in WT mice, a large population of CD8+ T cells was phenotyped as CD103+ CD69+, markers of bTRM, and differences were observed in the numbers of these cells when compared to PD-L1 KOs. Immunohistochemical studies revealed that brain-resident CD103+ bTRM cells were localized to the parenchyma. Higher frequencies of CXCR3 were also observed among WT animals in contrast to PD-L1 KOs. CONCLUSIONS: Taken together, our results indicate that bTRMs are present within the CNS following viral infection and the PD-1: PD-L1 pathway plays a role in the generation of this brain-resident population.


Subject(s)
B7-H1 Antigen/deficiency , Brain/metabolism , CD8-Positive T-Lymphocytes/metabolism , Encephalitis, Viral/metabolism , Programmed Cell Death 1 Receptor/deficiency , Animals , Brain/immunology , CD8-Positive T-Lymphocytes/immunology , Encephalitis, Viral/immunology , Female , Mice , Mice, Inbred BALB C , Mice, Knockout , NIH 3T3 Cells , Signal Transduction/physiology
16.
Sci Rep ; 7: 41889, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28165503

ABSTRACT

Fcγ receptors (FcγRs) for IgG couple innate and adaptive immunity through activation of effector cells by antigen-antibody complexes. We investigated relative levels of activating and inhibitory FcγRs on brain-resident microglia following murine cytomegalovirus (MCMV) infection. Flow cytometric analysis of microglial cells obtained from infected brain tissue demonstrated that activating FcγRs were expressed maximally at 5 d post-infection (dpi), while the inhibitory receptor (FcγRIIB) remained highly elevated during both acute and chronic phases of infection. The highly induced expression of activating FcγRIV during the acute phase of infection was also noteworthy. Furthermore, in vitro analysis using cultured primary microglia demonstrated the role of interferon (IFN)γ and interleukin (IL)-4 in polarizing these cells towards a M1 or M2 phenotype, respectively. Microglial cell-polarization correlated with maximal expression of either FcγRIV or FcγRIIB following stimulation with IFNγ or IL-4, respectively. Finally, we observed a significant delay in polarization of microglia towards an M2 phenotype in the absence of FcγRs in MCMV-infected Fcer1g and FcgR2b knockout mice. These studies demonstrate that neuro-inflammation following viral infection increases expression of activating FcγRs on M1-polarized microglia. In contrast, expression of the inhibitory FcγRIIB receptor promotes M2-polarization in order to shut-down deleterious immune responses and limit bystander brain damage.


Subject(s)
Brain/metabolism , Herpesviridae Infections/metabolism , Microglia/metabolism , Receptors, IgG/metabolism , 3T3 Cells , Animals , Brain/cytology , Cell Differentiation , Cells, Cultured , Female , Interferon-gamma/pharmacology , Interleukin-4/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microglia/cytology , Microglia/drug effects , Muromegalovirus , Receptors, IgG/genetics
17.
J Neuroinflammation ; 13(1): 114, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27207308

ABSTRACT

BACKGROUND: Chemokines produced by reactive glia drive migration of immune cells and previous studies from our laboratory have demonstrated that CD19(+) B cells infiltrate the brain. In this study, in vivo and in vitro experiments investigated the role of reactive glial cells in recruitment and survival of B-lineage cells in response to (murine cytomegalovirus) MCMV infection. METHODS: Flow cytometric analysis was used to assess chemokine receptor expression on brain-infiltrating B cells. Real-time RT-PCR and ELISA were used to measure chemokine levels. Dual-immunohistochemical staining was used to co-localize chemokine production by reactive glia. Primary glial cell cultures and migration assays were used to examine chemokine-mediated recruitment. Astrocyte: B cell co-cultures were used to investigate survival and proliferation. RESULTS: The chemokine receptors CXCR3, CXCR5, CCR5, and CCR7 were detected on CD19(+) cells isolated from the brain during MCMV infection. In particular, CXCR3 was found to be elevated on an increasing number of cells over the time course of infection, and it was the primary chemokine receptor expressed at 60 days post infection Quite different expression kinetics were observed for CXCR5, CCR5, and CCR7, which were elevated on the highest number of cells early during infection and decreased by 14, 30, and 60 days post infection Correspondingly, elevated levels of CXCL9, CXCL10, and CXCL13, as well as CCL5, were found within the brains of infected animals, and only low levels of CCL3 and CCL19 were detected. Differential expression of CXCL9/CXCL10 and CXCL13 between microglia and astrocytes was apparent, and B cells moved towards supernatants from MCMV-infected microglia, but not astrocytes. Pretreatment with neutralizing Abs to CXCL9 and CXCL10 inhibited this migration. In contrast, neutralizing Abs to the ligand of CXCR5 (i.e., CXCL13) did not significantly block chemotaxis. Proliferation of brain-infiltrating B cells was detected at 7 days post infection and persisted through the latest time tested (60 days post infection). Finally, astrocytes produce BAFF (B cell activating factor of the TNF family) and promote proliferation of B cells via cell-to-cell contact. CONCLUSIONS: CXCR3 is the primary chemokine receptor on CD19(+) B cells persisting within the brain, and migration to microglial cell supernatants is mediated through this receptor. Correspondingly, microglial cells produce CXCL9 and CXCL10, but not CXCL13. Reactive astrocytes promote B cell proliferation.


Subject(s)
B-Lymphocytes/pathology , Brain/pathology , Herpesviridae Infections/pathology , Muromegalovirus/pathogenicity , Neuroglia/pathology , Analysis of Variance , Animals , Animals, Newborn , B-Lymphocytes/virology , Brain/virology , Cell Survival , Cells, Cultured , Chemotaxis/physiology , Cytokines/metabolism , Disease Models, Animal , Female , Flow Cytometry , Herpesviridae Infections/virology , Leukocytes/pathology , Mice , Mice, Inbred C57BL , Neuroglia/virology , RNA, Messenger/metabolism
18.
Glia ; 63(11): 1982-1996, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26041050

ABSTRACT

Long-term, persistent central nervous system inflammation is commonly seen following brain infection. Using a murine model of viral encephalitis (murine cytomegalovirus, MCMV) we have previously shown that post-encephalitic brains are maintained in an inflammatory state consisting of glial cell reactivity, retention of brain-infiltrating tissue-resident memory CD8+ T-cells, and long-term persistence of antibody-producing cells of the B-lineage. Here, we report that this neuroinflammation occurs concomitantly with accumulation and retention of immunosuppressive regulatory T-cells (Tregs), and is exacerbated following their ablation. However, the extent to which these Tregs function to control neuroimmune activation following MCMV encephalitis is unknown. In this study, we used Foxp3-diphtheria toxin receptor-GFP (Foxp3-DTR-GFP) transgenic mice, which upon administration of low-dose diphtheria toxin (DTx) results in the specific depletion of Tregs, to investigate their function. We found treatment with DTx during the acute phase of viral brain infection (0-4 dpi) resulted in depletion of Tregs from the brain, exacerbation of encephalitis (i.e., increased presence of CD4+ and CD8+ T-cells), and chronic reactive phenotypes of resident glial cells (i.e., elevated MHC Class II as well as PD-L1 levels, sustained microgliosis, and increased glial fibrillary acidic protein (GFAP) expression on astrocytes) versus untreated, infected animals. This chronic proinflammatory environment was associated with reduced cognitive performance in spatial learning and memory tasks (Barnes Maze) by convalescent animals. These data demonstrate that chronic glial cell activation, unremitting post-encephalitic neuroinflammation, and its associated long-term neurological sequelae in response to viral brain infection are modulated by the immunoregulatory properties of Tregs. GLIA 2015;63:1982-1996.

19.
PLoS One ; 10(12): e0145457, 2015.
Article in English | MEDLINE | ID: mdl-26720146

ABSTRACT

Accumulation and retention of regulatory T-cells (Tregs) has been reported within post viral-encephalitic brains, however, the full extent to which these cells modulate neuroinflammation is yet to be elucidated. Here, we used Foxp3-DTR (diphtheria toxin receptor) knock-in transgenic mice, which upon administration of low dose diphtheria toxin (DTx) results in specific deletion of Tregs. We investigated the proliferation status of various immune cell subtypes within inflamed central nervous system (CNS) tissue. Depletion of Tregs resulted in increased proliferation of both CD8+ and CD4+ T-cell subsets within the brain at 14 d post infection (dpi) when compared to Treg-sufficient animals. At 30 dpi, while proliferation of CD8+ T-cells was controlled within brains of both Treg-depleted and undepleted mice, proliferation of CD4+ T-cells remained significantly enhanced with DTx-treatment. Previous studies have demonstrated that Treg numbers within the brain rebound following DTx treatment to even higher numbers than in untreated animals. Despite this rebound, CD8+ and CD4+ T-cells proliferated at a higher rate when compared to that of Treg-sufficient mice, thus maintaining sustained neuroinflammation. Furthermore, at 30 dpi we found the majority of CD8+ T-cells were CD127hi KLRG1- indicating that the cells were long lived memory precursor cells. These cells showed marked elevation of CD103 expression, a marker of tissue resident-memory T-cells (TRM) in the CNS, in untreated animals when compared to DTx-treated animals suggesting that generation of TRM is impaired upon Treg depletion. Moreover, the effector function of TRM as indicated by granzyme B production in response to peptide re-stimulation was found to be more potent in Treg-sufficient animals. Taken together, our findings demonstrate that Tregs limit neuroinflammatory responses to viral infection by controlling cell proliferation and may direct a larger proportion of lymphocytes within the brain to be maintained as TRM cells.


Subject(s)
Brain/immunology , Brain/virology , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Immunologic Memory , Lymphocyte Activation/immunology , Muromegalovirus/physiology , T-Lymphocytes, Regulatory/immunology , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Cytokines/biosynthesis , Granzymes/biosynthesis , Humans , Lymphocyte Depletion , T-Lymphocytes, Regulatory/cytology
20.
J Immunol ; 193(12): 6070-80, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25385825

ABSTRACT

Previous studies have demonstrated the existence of a subset of B lymphocytes, regulatory B cells (Bregs), which modulate immune function. In this study, in vivo and in vitro experiments were undertaken to elucidate the role of these Bregs in controlling neuroinflammation following viral brain infection. We used multicolor flow cytometry to phenotype lymphocyte subpopulations infiltrating the brain, along with in vitro cocultures to assess their anti-inflammatory and immunoregulatory roles. This distinctive subset of CD19(+)CD1d(hi)CD5(+) B cells was found to infiltrate the brains of chronically infected animals, reaching highest levels at the latest time point tested (30 d postinfection). B cell-deficient Jh(-/-) mice were found to develop exacerbated neuroimmune responses as measured by enhanced accumulation and/or retention of CD8(+) T cells within the brain, as well as increased levels of microglial activation (MHC class II). Conversely, levels of Foxp3(+) regulatory T cells were found to be significantly lower in Jh(-/-) mice when compared with wild-type (Wt) animals. Further experiments showed that in vitro-generated IL-10-secreting Bregs (B10) were able to inhibit cytokine responses from microglia following stimulation with viral Ags. These in vitro-generated B10 cells were also found to promote proliferation of regulatory T cells in coculture studies. Finally, gain-of-function experiments demonstrated that reconstitution of Wt B cells into Jh(-/-) mice restored neuroimmune responses to levels exhibited by infected Wt mice. Taken together, these results demonstrate that Bregs modulate T lymphocyte as well as microglial cell responses within the infected brain and promote CD4(+)Foxp3(+) T cell proliferation in vitro.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Encephalitis/immunology , Encephalitis/virology , Adoptive Transfer , Animals , B-Lymphocytes, Regulatory/metabolism , Brain/immunology , Brain/pathology , Brain/virology , Disease Models, Animal , Encephalitis/genetics , Encephalitis/metabolism , Female , Herpesviridae Infections/genetics , Herpesviridae Infections/immunology , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Immunophenotyping , Interleukin-10/biosynthesis , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Microglia/immunology , Muromegalovirus/genetics , Muromegalovirus/immunology , Phenotype , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...