Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 666: 101-117, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588623

ABSTRACT

Electrode materials must be rationally designed with morphologies and electroactive sites manipulated through cations' synergy in bimetal compounds in order to maximize the performance of energy storage devices. Therefore, the present study emphasizes binder-free scalable preparation of cobalt nickel vanadate (CNV) thin films by a facile successive ionic layer adsorption and reaction (SILAR) approach with specific cations (Co:Ni) alternation. Increasing the Ni cation content in the CNV notably transforms its microflower structure comprising nanoflakes (252 nm) into nanoparticles (74 nm). An optimized S-CNV5 thin film cathode with Co:Ni molar ratio of âˆ¼ 0.4:0.6 and a high specific surface area of 340 m2 g-1, provided the excellent specific capacitance (Csp) and capacity (Csc) of 1382 F g-1 and 691 C g-1, respectively at 1 A g-1 current density. A hybrid aqueous supercapacitor (HASc) device with positive and negative electrodes comprising optimized CNV and reduced graphene oxide (rGO), respectively, in a 1 M KOH electrolyte delivered a Csp of 133 F g-1 and a specific energy (SE) of 53 Wh kg-1 at a specific power (SP) of 2261 kW kg-1. Additionally, a fabricated hybrid solid-state supercapacitor (HSSc) device with the same electrodes applying PVA-KOH gel electrolyte displayed a Csp of 119 F g-1, and SE of 46 Wh kg-1 at SP of 1184 W kg-1. This boosted electrochemical activity is due to the synergetic effects of Ni and Co species in the CNV thin film electrodes, emphasizing the potential of CNV electrodes as cathodes in hybrid energy storage devices.

2.
Materials (Basel) ; 15(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35591460

ABSTRACT

We present a simplistic, ultrafast, and facile hydrothermal deposition of ternary Cu2SnS3 nanoparticles (CTS NPs). The fabricated CTS NPs show superior antimicrobial and photocatalytic activities. In the presence of UV-Visible illumination, methylene blue (MB) dye was studied for photocatalytic dye degradation activity of CTS NPs. Excellent efficiency is shown by incorporating CTS NPs to degrade MB dye. There is a ~95% decrease in the absorbance peak of the dye solution within 120 min. Similarly, CTS NPs tested against three bacterial strains, i.e., B. subtilis, S. aureus, P. vulgaris, and one fungal strain C. albicans, defining the lowest inhibitory concentration and zone of inhibition, revealed greater antimicrobial activity. Hence, it is concluded that the CTS NPs are photocatalytically and antimicrobially active and have potential in biomedicine.

3.
Dalton Trans ; 51(16): 6378-6389, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35388825

ABSTRACT

In recent years, modern appliances require high energy density with a burst power supply. Hybrid supercapacitors show high performance based on high energy density without compromising power density and stability over thousands of charge-discharge cycles. In this work, the optimized hybrid electrodes using lanthanum-doped hematite (lanthanum-doped iron oxide) noted as 7.5%La-HMT as a negative electrode and hydrous cobalt phosphate (CoPO) as a battery-type positive electrode have been successfully fabricated via a simple hydrothermal method and a facile co-precipitation method, respectively. The 7.5%La-HMT showed excellent electrochemical performance due to doping of rare-earth La3+ metal ions, resulting in improvised active sites and reduction in the equivalent resistance. The 7.5%La-HMT operated at a high potential window (0 to -1.2 V) with an ultra-high specific capacitance (Sp) of 1226.7 F g-1 at 1 A g-1 with capacitance retention of 89.3% over 1000 cycles. CoPO could be operated at a high working window (0 to 0.45 V) with a specific capacity of 121.7 mA h g-1 at a current density of 2 A g-1 with capacitance retention of 85.4% over 1000 cycles. The configured CoPO//KOH//10%La-HMT aqueous hybrid capacitor device (Aq-HSC) could be operated at a potential window of 1.6 V and delivered a maximum energy density (E.D) of 83.6 W h kg-1 at a power density (P.D) of 3.2 kW kg-1 with Sp of 235.0 F g-1 at 2 A g-1 and 89.0% Sp retention over 5000 cycles. The simplicity of the synthesis methods for CoPO and 7.5%La-HMT along with their superior super-capacitive properties make them suitable for advanced electrical devices and hybrid vehicles.

4.
J Colloid Interface Sci ; 616: 548-559, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35228050

ABSTRACT

The layer-by-layer mesoporous nanohybrids of Ni-Cr-layered double hydroxide (Ni-Cr-LDH) and polyoxotungstate nanoclusters (Ni-Cr-LDH-POW) are prepared via exfoliation reassembling strategy. The intercalative hybridization of Ni-Cr-LDH with POW nanoclusters leads to forming a layer-by-layer stacking framework with significant expansion of the interplanar spacing and surface area. The aqueous hybrid supercapacitor (AHSC) and all-solid-state hybrid supercapacitor (SSHSC) devices are fabricated using Ni-Cr-LDH-POW nanohybrid as a cathode and reduced graphene oxide (rGO) as an anode material. Notably, the NCW-2//rGO AHSC device delivers an ED of 43 Wh kg-1 at PD of 1.33 kW kg-1 and excellent electrochemical stability over 10,000 charge-discharge cycles. Moreover, NCW-2//rGO SSHSC exhibits an ED of 34 Wh kg-1 at PD of 1.32 kW kg-1 with capacitance retention of 86% after 10,000 cycles. These results highlight the excellent electrochemical functionality and advantages of the Ni-Cr-LDH-POW nanohybrids as a cathode for hybrid supercapacitors.

5.
Small ; 18(21): e2107572, 2022 05.
Article in English | MEDLINE | ID: mdl-35285140

ABSTRACT

Amongst various futuristic renewable energy sources, hydrogen fuel is deemed to be clean and sustainable. Electrochemical water splitting (EWS) is an advanced technology to produce pure hydrogen in a cost-efficient manner. The electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the vital steps of EWS and have been at the forefront of research over the past decades. The low-cost nanostructured metal phosphide (MP)-based electrocatalysts exhibit unconventional physicochemical properties and offer very high turnover frequency (TOF), low over potential, high mass activity with improved efficiency, and long-term stability. Therefore, they are deemed to be potential electrocatalysts to meet practical challenges for supporting the future hydrogen economy. This review discusses the recent research progress in nanostructured MP-based catalysts with an emphasis given on in-depth understanding of catalytic activity and innovative synthetic strategies for MP-based catalysts through combined experimental (in situ/operando techniques) and theoretical investigations. Finally, the challenges, critical issues, and future outlook in the field of MP-based catalysts for water electrolysis are addressed.


Subject(s)
Nanostructures , Water , Catalysis , Hydrogen/chemistry , Metals , Nanostructures/chemistry , Water/chemistry
6.
Nanotechnology ; 32(36)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34125718

ABSTRACT

Graphene and graphene-based hybrid materials have emerged as an outstanding supercapacitor electrode material primarily because of their excellent surface area, high electrical conductivity, and improved thermal, mechanical, electrochemical cycling stabilities. Graphene alone exhibits electric double layer capacitance (EDLC) with low energy density and high power density. The use of aerogels in a supercapacitor is a pragmatic approach due to its extraordinary properties like ultra-lightweight, high porosity and specific surface area. The aerogels encompass a high volume of pores which leads to easy soak by the electrolyte and fast charge-discharge process. Graphene aerogels assembled into three-dimensional (3D) architecture prevent there stacking of graphene sheets and maintain the high surface area and hence excellent cycling stability and rate capacitance. However, the energy density of graphene aerogels is limited due to EDLC type of charge storage mechanism. Consequently, 3D graphene aerogel coupled with pseudocapacitive materials such as transition metal oxides, metal hydroxides, conducting polymers, nitrides, chalcogenides show an efficient energy density and power density performance due to the presence of both types of charge storage mechanisms. This laconic review focuses on the design and development of graphene-based aerogel in the field of the supercapacitor. This review is an erudite article about methods, technology and electrochemical properties of graphene aerogel.

7.
Langmuir ; 37(17): 5260-5274, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33886316

ABSTRACT

In the present study, cobalt manganese phosphate (H-CMP-series) thin films with different compositions of Co/Mn are prepared on stainless steel (SS) substrate via a facile hydrothermal method and employed as binder-free cathode electrodes in a hybrid supercapacitor. The XRD study reveals a monoclinic crystal structure, and the FE-SEM analysis confirmed that H-CMP-series samples displayed a nano/microarchitecture (microflowers to nanoflakes) on the surface of SS substrate with excess available surfaces and unique sizes. Interestingly, the synergy between cobalt and manganese species in the cobalt manganese phosphate thin film electrode demonstrates a maximum specific capacitance of 571 F g-1 at a 2.2 A g-1 current density in 1 M KOH. Besides, the nano/microstructured cobalt manganese phosphate was able to maintain capacitance retention of 88% over 8000 charge-discharge cycles. More importantly, the aqueous/all-solid-state asymmetric supercapacitor manufactured with the cobalt manganese phosphate thin film as the cathode and reduced graphene oxide (rGO) as the anode displays a high operating potential window of 1.6 V. The aqueous asymmetric device exhibited a maximum specific capacitance of 128 F g-1 at a current density of 1 A g-1 with an energy density of 45.7 Wh kg-1 and a power density of 1.65 kW kg-1. In addition, the all-solid-state asymmetric supercapacitor device provides a high specific capacitance of 37 F g-1 at 1 A g-1 with 13.3 Wh kg-1 energy density and 1.64 kW kg-1 power density in a polymer gel (PVA-KOH) electrolyte. The long cyclic life of both devices (87 and 84%, respectively, after 6000 cycles) and practical demonstration of the solid-state device (lighting of a LED lamp) suggest another alternative choice for cathode materials to develop stable energy storage devices with high energy density. Furthermore, the aforementioned study paves the way to investigate phosphate-based materials as a new class of materials for supercapacitor applicability.

8.
J Colloid Interface Sci ; 532: 491-499, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30103132

ABSTRACT

Nanocrystalline cobalt sulfide thin film electrodes have been deposited on stainless steel substrate using binder-free chemical bath deposition (CBD) method and electrochemical study is performed in 1 M KOH electrolyte. Linear sweep voltammetry (LSV) curve shows that cobalt sulfide thin film electrode requires 300 mV overpotential (ƞ) to reach the current density of 10 mA cm-2. Also, it exhibits Tafel slope of 57 mV decade-1 with stable catalytic activity over 14 h. Along with good electrocatalytic oxygen evolution performance, in supercapacitive study it shows specific capacitance of 252.39 F g-1 at a scan rate of 5 mV s-1. The stability test indicates that cobalt sulfide electrode is stable for 1000 cyclic voltammetry (CV) cycles.

9.
ACS Appl Mater Interfaces ; 10(19): 16636-16649, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29687716

ABSTRACT

A simplistic and economical chemical way has been used to prepare highly efficient nanostructured, manganese oxide (α-MnO2) and hexagonal copper sulfide (h-CuS) electrodes directly on cheap and flexible stainless steel sheets. Flexible solid-state α-MnO2/flexible stainless steel (FSS)/polyvinyl alcohol (PVA)-LiClO4/h-CuS/FSS asymmetric supercapacitor (ASC) devices have been fabricated using PVA-LiClO4 gel electrolyte. Highly active surface areas of α-MnO2 (75 m2 g-1) and h-CuS (83 m2 g-1) electrodes contribute to more electrochemical reactions at the electrode and electrolyte interface. The ASC device has a prolonged working potential of +1.8 V and accomplishes a capacitance of 109.12 F g-1 at 5 mV s-1, energy density of 18.9 Wh kg-1, and long-term electrochemical cycling with a capacity retention of 93.3% after 5000 cycles. Additionally, ASC devices were successful in glowing seven white-light-emitting diodes for more than 7 min after 30 s of charging. Outstandingly, real practical demonstration suggests "ready-to-sell" products for industries.

10.
Anal Chem ; 89(16): 8531-8537, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28718633

ABSTRACT

Development of highly sensitive and selective semiconductor-based metal oxide sensor devices to detect toxic, explosive, flammable, and pollutant gases is still a challenging research topic. In the present work, we systematically enhanced the liquefied petroleum gas (LPG) sensing performance of chemical bath deposited TiO2 nanorods by decorating Pd nanoparticle catalyst. Surface morphology with elemental mapping, crystal structure, composition and oxidation states, and surface area measurements of pristine TiO2 and Pd:TiO2 nanorods was examined by high resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption characterization techniques. LPG sensing performance of pristine TiO2 and Pd:TiO2 nanorods was investigated in different LPG concentration and operating temperature ranges. The LPG response of 21% for pristine TiO2 nanorods is enhanced to 49% after Pd catalyst decoration with reasonably fast response and recovery times. Further, the sensor exhibited long-term stability, which could be due to the strong metal support (Pd:TiO2) interaction and catalytic properties offered by the Pd nanoparticle catalyst. The work described herein demonstrates a general and scalable approach that provides a promising route for rational design of variety of sensor devices for LPG detection.

11.
J Colloid Interface Sci ; 498: 202-209, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28324726

ABSTRACT

The mesoporous nanostructured metal oxides have a lot of capabilities to upsurge the energy storing capacity of the supercapacitor. In present work, different nanostructured morphologies of MnO2 have been successfully fabricated on flexible carbon cloth by simple but capable hydrothermal method at different deposition temperatures. The deposition temperature has strong influence on reaction kinetics, which subsequently alters the morphology and electrochemical performance. Among different nanostructured MnO2 thin films, the mesoporous weirds composed thin film obtained at temperature of 453K exhibits excellent physical and electrochemical features for supercapacitor application. The weirds composed MnO2 thin film exhibits specific surface area of 109m2g-1, high specific capacitance of 595Fg-1 with areal capacitance of 4.16Fcm-2 at a scan rate of 5mVs-1 and high specific energy of 56.32Whkg-1. In addition to this, MnO2 weirds attain capacity retention of 87 % over 2000 CV cycles, representing better cycling stability. The enhanced electrochemical performance could be ascribed to direct growth of highly porous MnO2 weirds on carbon cloth which provide more pathways for easy diffusion of electrolyte into the interior of electroactive material. The as-fabricated electrode with improved performance could be ascribed as a potential electrode material for energy storage devices.

12.
Sci Rep ; 6: 39205, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27982087

ABSTRACT

In present investigation, we have prepared a nanocomposites of highly porous MnO2 spongy balls and multi-walled carbon nanotubes (MWCNTs) in thin film form and tested in novel redox-active electrolyte (K3[Fe(CN)6] doped aqueous Na2SO4) for supercapacitor application. Briefly, MWCNTs were deposited on stainless steel substrate by "dip and dry" method followed by electrodeposition of MnO2 spongy balls. Further, the supercapacitive properties of these hybrid thin films were evaluated in hybrid electrolyte ((K3[Fe(CN)6 doped aqueous Na2SO4). Thus, this is the first proof-of-design where redox-active electrolyte is applied to MWCNTs/MnO2 hybrid thin films. Impressively, the MWCNTs/MnO2 hybrid film showed a significant improvement in electrochemical performance with maximum specific capacitance of 1012 Fg-1 at 2 mA cm-2 current density in redox-active electrolyte, which is 1.5-fold higher than that of conventional electrolyte (Na2SO4). Further, asymmetric capacitor based on MWCNTs/MnO2 hybrid film as positive and Fe2O3 thin film as negative electrode was fabricated and tested in redox-active electrolytes. Strikingly, MWCNTs/MnO2//Fe2O3 asymmetric cell showed an excellent supercapacitive performance with maximum specific capacitance of 226 Fg-1 and specific energy of 54.39 Wh kg-1 at specific power of 667 Wkg-1. Strikingly, actual practical demonstration shows lightning of 567 red LEDs suggesting "ready-to sell" product for industries.

13.
J Colloid Interface Sci ; 483: 261-267, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27565957

ABSTRACT

To achieve the highest electrochemical performance for supercapacitor, it is very essential to find out a suitable pair of an active electrode material and an electrolyte. In the present work, a simple approach is employed to enhance the supercapacitor performance of WO3 thin film. The WO3 thin film is prepared by a simple and cost effective chemical bath deposition method and its electrochemical performance is tested in conventional (H2SO4) and redox additive [H2SO4+hydroquinone (HQ)] electrolytes. Two-fold increment in electrochemical performance for WO3 thin film is observed in redox additive aqueous electrolyte compared to conventional electrolyte. WO3 thin film showed maximum specific capacitance of 725Fg(-1), energy density of 25.18Whkg(-1) at current density of 7mAcm(-2) with better cycling stability in redox electrolyte. This strategy provides the versatile way for designing the high performance energy storage devices.

14.
J Colloid Interface Sci ; 460: 370-6, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26397234

ABSTRACT

The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days.

15.
Sci Rep ; 5: 12454, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26208144

ABSTRACT

The facile and economical electrochemical and successive ionic layer adsorption and reaction (SILAR) methods have been employed in order to prepare manganese oxide (MnO2) and iron oxide (Fe2O3) thin films, respectively with the fine optimized nanostructures on highly flexible stainless steel sheet. The symmetric and asymmetric flexible-solid-state supercapacitors (FSS-SCs) of nanostructured (nanosheets for MnO2 and nanoparticles for Fe2O3) electrodes with Na2SO4/Carboxymethyl cellulose (CMC) gel as a separator and electrolyte were assembled. MnO2 as positive and negative electrodes were used to fabricate symmetric SC, while the asymmetric SC was assembled by employing MnO2 as positive and Fe2O3 as negative electrode. Furthermore, the electrochemical features of symmetric and asymmetric SCs are systematically investigated. The results verify that the fabricated symmetric and asymmetric FSS-SCs present excellent reversibility (within the voltage window of 0-1 V and 0-2 V, respectively) and good cycling stability (83 and 91%, respectively for 3000 of CV cycles). Additionally, the asymmetric SC shows maximum specific capacitance of 92 Fg(-1), about 2-fold of higher energy density (41.8 Wh kg(-1)) than symmetric SC and excellent mechanical flexibility. Furthermore, the "real-life" demonstration of fabricated SCs to the panel of SUK confirms that asymmetric SC has 2-fold higher energy density compare to symmetric SC.

16.
Chempluschem ; 80(9): 1478-1487, 2015 Sep.
Article in English | MEDLINE | ID: mdl-31973348

ABSTRACT

La2 Se3 nanoflakes were prepared from an aqueous medium by means of a chemical-bath deposition method and were later utilized as a supercapacitor electrode. X-ray diffraction (XRD), Fourier transform Raman (FT Raman), field-emission scanning electron microscopy (FESEM), and contact-angle measurement techniques were used to study the structural, morphological, and wettability properties of La2 Se3 films. The XRD study confirmed the cubic crystal structure of the La2 Se3 film. The surface morphology and wettability studies revealed the nanoflake morphology with a hydrophilic surface, which could be beneficial to electrochemical reactions. The electrochemical performance of the La2 Se3 nanoflakes was evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques. The La2 Se3 nanoflake electrode exhibited a maximum specific capacitance of 331 F g-1 at a scan rate of 5 mV s-1 . An electrochemical impedance study confirmed that the La2 Se3 nanoflake electrode has a better supercapacitive behavior in an aqueous electrolyte. The asymmetric supercapacitor device based on the La2 Se3 electrode in aqueous electrolyte exhibited good specific capacitance, excellent charge/discharge properties, and superior long-term cycling stability.

17.
ACS Appl Mater Interfaces ; 6(5): 3176-88, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24548054

ABSTRACT

The preparation of nanostructured metal oxide decorated on multiwalled carbon nanotubes (MWCNTs) nanohybrid films through simple, scalable, additive-free, binderless, and cost-effective route has fascinated significant attention not only in fundamental research areas but also its commercial applications, in order to reduce the growing environmental pollution and the cost of electrode fabrication. Here, we report the fabrication of highly flexible electrode with NiO/MWCNTs nanohybrid thin films directly on stainless steel substrate using successive ionic layer adsorption and reaction (SILAR) method. The impact of ratio of adsorption and reaction cycles on structural, surface areas and electrochemical properties of NiO/MWCNTs nanohybrids was investigated. X-ray diffraction measurements confirm the hybridization and face centered cubic (FCC) crystal structure of NiO in NiO/MWCNTs nanohybrids. In addition, these nanohybrids exhibit excellent surface properties such as uniform surface morphology, good surface area, pore volume, and uniform pore size distribution. The electrochemical tests demonstrate the highest specific capacitance of 1727 F g(-1) at 5 mA cm(-2) of current density with 91% capacitance retention after 2000 cycles. In addition, the Ragone plot confirms the better power and energy densities for all NiO/MWCNTs nanohybrids. The attractive electrochemical capacitive activity revealed by NiO/MWCNTs nanohybrid electrode proposes that it is an auspicious respondent for future energy storage application.

18.
Dalton Trans ; 42(18): 6459-67, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23471154

ABSTRACT

Copper oxide (CuO) thin films are successfully synthesized using a surfactant assisted chemical bath deposition method for application in supercapacitors. The effect of organic surfactants such as Triton X-100 and polyvinyl alcohol (PVA) on structural, morphological, surface areas and electrochemical properties of CuO thin films is investigated. The films deposited using organic surfactants exhibit different surface morphologies. It is observed that the organic surfactants play important roles in modifying the morphology, surface area and pore size distribution. Electrochemical analysis confirms that the nanostructures of the electrode material play a vital role in supercapacitors. The cyclic voltammetry studies show a considerably improved high rate pseudocapacitance of CuO samples synthesized using organic surfactants. The maximum specific capacitance of 411 F g(-1) at 5 mV s(-1) is obtained for the CuO sample prepared using an organic surfactant (Triton X-100). Furthermore, all the CuO nanostructures exhibit high power performance, excellent rate as well as long term cycling stability. The Ragone plot ascertains better power and energy densities of CuO nanostructured samples. This is an easy and simple way to tune the morphology using surfactants which can be applied for other energy storage materials.

19.
ACS Appl Mater Interfaces ; 5(7): 2446-54, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23469934

ABSTRACT

This study uses a "bottom-up" approach chemical method to coat nanocrystalline Ni(OH)2 onto multiwalled carbon nanotubes (MWCNTs) for flexible supercapacitor electrodes, where the higher electronic conductivity of MWCNTs permits their use as the supporting backbone onto which Ni(OH)2 can be deposited. The paper portrays the advantages of the facile successive ionic layer adsorption and reaction (SILAR) method for depositing Ni(OH)2/MWCNT thin films onto large area flexible substrates. We demonstrate that these Ni(OH)2/MWCNT films consist of a uniform coating of sponge-like Ni(OH)2 on the MWCNT network structure using scanning electron micrographs and transmission electron micrographs; this structure is promising for supercapacitor applications. Ni(OH)2/MWCNT films exhibit a specific capacitance of 1487 F g(-1) at a scan rate of 5 mV s(-1) in a 2 M KOH aqueous solution. The electrodes are generated using a simple three-beaker SILAR system at ambient conditions, thus providing an easy approach to fabricate high-power and high-energy flexible supercapacitors. Ni(OH)2/MWCNTs demonstrate a good rate capability and excellent long-term cyclic stability (96% capacity retention after 1000 cycles). Such high-performance capacitive behavior indicates that Ni(OH)2/MWCNT composites are promising electrode materials for the fabrication of supercapacitors. Thus, the method described in this paper provides a generalized route for the production of a wide range of Ni(OH)2/MWCNT-based materials for applications beyond electrochemical energy storage. These encouraging results promote interest in developing such devices, including nontoxic and greener components, compared with current organic-based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...