Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Mol Divers ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683486

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease affecting mental ability and neurocognitive functions. Cholinesterase enzymes affect concentration of acetylcholine in the brain, leading to dementia. Thus, there is an urgent need to develop novel dual cholinesterase inhibitors as possible anti-AD drugs. Herein, we have designed and synthesized a novel series of 9H-carbazole-4H-chromenes 4(a-l) through a one-pot three-component reaction of salicylaldehydes (1), hydroxycarbazole (2) and N-methyl-1-(methylthio)-2-nitroethenamine (3) using triethylamine as a catalyst in ethanol. Synthetic transformation involves the formation of two C-C bonds and one C-O bond in a single step to obtain desired analogs. The rapid one-pot reaction does not require chromatographic purification, proceeds under mild conditions, and exhibits good tolerance toward various functional groups with high synthetic yields. Synthesized compounds were screened for cytotoxicity using MTT assay in BV-2 microglial cells. These compounds were then in-vitro screened against acetylcholinesterase (AChE) and butyrylcholinestrase (BuChE) enzymes. Most of these ligands have shown dual cholinesterase inhibitory activity compared to the standard drug. In-vitro results showed that the compounds 4a and 4d have promising anticholinesterase response against both cholinesterase enzymes (4a, AChE IC50: 5.76 µM, BuChE IC50: 48.98 µM; 4d, AChE IC50: 3.58 µM, BuChE IC50: 42.73 µM). In-vitro results were validated by molecular docking and dynamic simulation at 100 ns. Molecular docking and molecular dynamics simulation study strongly supported structural features present in these analogs. Together, these analogs could be exploited to develop dual anti-cholinesterase candidates to treat AD in combination with other drugs.

2.
Bioorg Chem ; 147: 107402, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688199

ABSTRACT

A series of novel l-ascorbic acid derivatives bearing aryl and alkyl sulfonate substituents were synthesized and characterized. In vitro anticancer evaluation against MCF-7 (breast) and A-549 (lung) cancer cell lines revealed potent activity for most of the compounds, with 2b being equipotent to the standard drug colchicine against MCF-7 (IC50 = 0.04 µM). Notably, compound 2b displayed 89-fold selectivity for MCF-7 breast cancer over MCF-10A normal breast cells. Derivatives with two sulfonate groups (2a-g, 3a-g) exhibited superior potency over those with one sulfonate (4a-c,5g, 6b). Compounds 2b and 2c potently inhibited tubulin polymerization in A-549 cancer cells (73.12 % and 62.09 % inhibition, respectively), substantiating their anticancer potential through microtubule disruption. Molecular docking studies showed higher binding scores and affinities for these compounds at the colchicine-binding site of α, ß-tubulin compared to colchicine itself. In-silico ADMET predictions indicated favourable drug-like properties, with 2b exhibiting the highest binding affinity. These sulfonate derivatives of l-ascorbic acid represents promising lead scaffolds for anticancer drug development.


Subject(s)
Antineoplastic Agents , Ascorbic Acid , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Tubulin Modulators , Tubulin , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ascorbic Acid/chemistry , Ascorbic Acid/pharmacology , Tubulin/metabolism , Structure-Activity Relationship , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Molecular Structure , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Polymerization/drug effects , Sulfonic Acids/chemistry , Sulfonic Acids/antagonists & inhibitors , Sulfonic Acids/pharmacology , Cell Line, Tumor
3.
Biomedicines ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38397888

ABSTRACT

The primary cause of atherosclerotic cardiovascular disease (ASCVD) is elevated levels of low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in this process by binding to the LDL receptor (LDL-R) domain, leading to reduced influx of LDL-C and decreased LDL-R cell surface presentation on hepatocytes, resulting higher circulating levels of LDL-C. As a consequence, PCSK9 has been identified as a crucial target for drug development against dyslipidemia and hypercholesterolemia, aiming to lower plasma LDL-C levels. This research endeavors to identify promising inhibitory candidates that target the allosteric site of PCSK9 through an in silico approach. To start with, the FDA-approved Drug Library from Selleckchem was selected and virtually screened by docking studies using Glide extra-precision (XP) docking mode and Smina software (Version 1.1.2). Subsequently, rescoring of 100 drug compounds showing good average docking scores were performed using Gnina software (Version 1.0) to generate CNN Score and CNN binding affinity. Among the drug compounds, amikacin, bestatin, and natamycin were found to exhibit higher docking scores and CNN affinities against the PCSK9 enzyme. Molecular dynamics simulations further confirmed that these drug molecules established the stable protein-ligand complexes when compared to the apo structure of PCSK9 and the complex with the co-crystallized ligand structure. Moreover, the MM-GBSA calculations revealed binding free energy values ranging from -84.22 to -76.39 kcal/mol, which were found comparable to those obtained for the co-crystallized ligand structure. In conclusion, these identified drug molecules have the potential to serve as inhibitors PCSK9 enzyme and these finding could pave the way for the development of new PCSK9 inhibitory drugs in future in vitro research.

4.
Article in English | MEDLINE | ID: mdl-38416196

ABSTRACT

The present study aimed to investigate the anti-cancer mechanism of canagliflozin (CANA) and dapagliflozin (DAPA), sodium-glucose co-transporter-2 (SGLT2) inhibitors, using in silico and in vitro approaches. Network pharmacology was employed to predict the targets of the inhibitors and GO gene enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation conducted to explore the interacting pathways. Molecular docking and molecular dynamic (MD) simulation studies were performed to confirm the important targets and assess conformational stability. In vitro cytotoxicity assays, MIA-PaCa-2 and DU-145 cell lines CANA and DAPA was performed. Protein-protein interaction (PPI) network analysis indicated that CANA and DAPA exert anticancer effects through MAPK, mTOR, EGFR-KRAS-BRAF, FGFR, and PI3KA pathways. KEGG analysis revealed that these inhibitors could be used in the treatment of various cancers, including breast, prostate, pancreatic, chronic myeloid leukemia, thyroid, small cell lung, gastric, and bladder cancer. Docking results showed highest affinity for MAPK1 for CANA (- 9.60 kcal/mol) and DAPA (- 9.58 kcal/mol). MD simulation results showed that RMSD values for the MAPK1-compound exhibit remarkable stability over a timeframe of 100 ns. In cytotoxicity assays using MIA-PaCa-2 and DU-145 cell lines, CANA demonstrated a potential antiproliferative effect on the pancreatic cell line MIA-PaCa-2 after 48 h of treatment at a concentration of 100 µg/ml. Furthermore, CANA arrested the cell cycle in the sub-G1 phase and induced late apoptosis and necrosis in MIA-PaCa-2 cell line. Based on these findings, CANA shows promise as a potential novel treatment strategy for pancreatic cancer.

5.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37811574

ABSTRACT

Targeting Hec1/Nek2 is considered as crucial target for cancer treatment due to its significant role in cell proliferation. In pursuit of this, a series of twenty-five 2-aminothiazoles derivatives, along with their Hec1/Nek2 inhibitory activities were subjected to QSAR studies utilizing QSARINS software. The significant three descriptor QSAR model was generated, showing noteworthy statistical parameters: a correlation coefficient of cross validation leave one out (Q2LOO) = 0.7965, coefficient of determination (R2) = 0.8436, (R2ext) = 0.6308, cross validation leave many out (Q2LMO) = 0.7656, Concordance Correlation Coefficient (CCCCV = 0.8875), CCCtr = 0.9151, and CCCext = 0.0.7241. The descriptors integral to generated QSAR model include Moreau-Broto autocorrelation, which represents the spatial autocorrelation of a property along the molecular graph's topological structure (ATSC1i), Moran autocorrelation at lag 8, which is weighted by charges (MATS8c) and RPSA representing the total molecular surface area. It was noted that these descriptors significantly influence Hec1/Nek2 inhibitory activity of 2-aminothiazoles derivatives. New lead molecules were designed and predicted for their Hec1/Nek2 inhibitory activity based on the developed three descriptor model. Further, the ADMET and Molecular docking studies were carried out for these designed molecules. The three molecules were selected based on their docking score and further subjected for MD simulation studies. Post-MD MM-GBSA analysis were also performed to predicted the free binding energies of molecules. The study helped us to understand the key interactions between 2-aminothiazoles derivatives and Hec1/Nek2 protein that may be necessary to develop new lead molecules against cancer.Communicated by Ramaswamy H. Sarma.

6.
Eur J Pharmacol ; 957: 176028, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37657740

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting mental ability and interrupts neurocognitive functions. Treating multifactorial conditions of AD with a single-target-directed drug is highly difficult. Thus, a multi-target-directed ligand (MTDL) development strategy has been developed as a promising approach for the treatment of AD. Herein, we have synthesized two novel thiosemicarbazones as MTDLs and reported their bioactivities against diverse neuropathological events involved in AD. In vitro studies revealed that both compounds exhibited promising anticholinesterase activity (AChE, IC50 = 15.98 µM, MZET and IC50 = 30.23 µM, MZMT), well supported by a detailed computational study. Both analogs have shown good thermodynamic behaviour and stability through interactions with characteristic amino acid residues throughout simulation of 100 ns against acetylcholinesterase enzyme. In an electrophysiology assay, these analogs have shown a characteristic inhibitory response against the GluN1-1a + GluN2B subunit of N-methyl-D-aspartate receptors. Pre-treatment of BV-2 microglial cells with MZET effectively decreased nitrite production compared to nitrite produced by lipopolysaccharide-treated cells alone. Further, the effect of MZMT and MZET on autophagy regulation was determined using stably transfected SH-SY5Y neuroblastoma cells. MZET significantly enhanced the autophagy flux in neuroblastoma cells. A significant decrease in copper-catalysed oxidation of amyloid-ß in presence of synthesized thiosemicarbazones was also observed. Collectively, our findings indicated that these analogs have potential as effective anti-AD candidates and can be used as a prototype to develop more safer multi-targeted anti-AD drugs.


Subject(s)
Alzheimer Disease , Neuroblastoma , Thiosemicarbazones , Humans , Alzheimer Disease/drug therapy , Thiosemicarbazones/pharmacology , Ligands , Acetylcholinesterase , Benzaldehydes , Nitrites
7.
Mol Divers ; 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37266849

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) play essential roles in vital aspects of brain functions. NMDARs mediate clinical features of neurological diseases and thus, represent a potential therapeutic target for their treatments. Many findings implicated the GluN2B subunit of NMDARs in various neurological disorders including epilepsy, ischemic brain damage, and neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's chorea, and amyotrophic lateral sclerosis. Although a large amount of information is growing consistently on the importance of GluN2B subunit, however, limited recent data is available on how subunit-selective ligands impact NMDAR functions, which blunts the ability to render the diagnosis or craft novel treatments tailored to patients. To bridge this gap, we have focused on and summarized recently reported GluN2B selective ligands as emerging subunit-selective antagonists and modulators of NMDAR. Herein, we have also presented an overview of the structure-function relationship for potential GluN2B/NMDAR ligands with their binding sites and connection to CNS functionalities. Understanding of design rules and roles of GluN2B selective compounds will provide the link to medicinal chemists and neuroscientists to explore novel neurotherapeutic strategies against dysfunctions of glutamatergic neurotransmission.

8.
J Biomol Struct Dyn ; 41(22): 13168-13179, 2023.
Article in English | MEDLINE | ID: mdl-36757134

ABSTRACT

A novel coronavirus SARS-CoV-2 has caused a worldwide pandemic and remained a severe threat to the entire human population. Researchers worldwide are struggling to find an effective drug treatment to combat this deadly disease. Many FDA-approved drugs from varying inhibitory classes and plant-derived compounds are screened to combat this virus. Still, due to the lack of structural information and several mutations of this virus, initial drug discovery efforts have limited success. A high-resolution crystal structure of important proteins like the main protease (3CLpro) that are required for SARS-CoV-2 viral replication and polymerase (RdRp) and papain-like protease (PLpro) as a vital target in other coronaviruses still presents important targets for the drug discovery. With this knowledge, scaffold library of Interbioscreen (IBS) database was explored through molecular docking, MD simulation and postdynamic binding free energy studies. The 3D docking structures and simulation data for the IBS compounds was studied and articulated. The compounds were further evaluated for ADMET studies using QikProp and SwissADME tools. The results revealed that the natural compounds STOCK2N-00385, STOCK2N-00244, and STOCK2N-00331 interacted strongly with 3CLpro, PLpro, and RdRp, respectively, and ADMET data was also observed in the range of limits for almost all the compounds with few exceptions. Thus, it suggests that these compounds may be potential inhibitors of selected target proteins, or their structural scaffolds can be further optimized to obtain effective drug candidates for SARS-CoV-2. The findings of in-silico data need to be supported by in-vivo studies which could shed light on understanding the exact mode of inhibitory action.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Peptide Hydrolases , Humans , Papain , Molecular Docking Simulation , SARS-CoV-2 , RNA-Dependent RNA Polymerase , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology
9.
J Biomol Struct Dyn ; 41(21): 12038-12054, 2023.
Article in English | MEDLINE | ID: mdl-36629053

ABSTRACT

Candida albicans is one of the most common species of fungus with life-threatening systemic infections and a high mortality rate. The outer cell wall layer of C. albicans is packed with mannoproteins and glycosylated polysaccharide moieties that play an essential role in the interaction with host cells and tissues. The glucosamine-6-phosphate synthase enzyme produces N-acetylglucosamine, which is a crucial chemical component of the cell wall of Candida albicans. Collectively, these components are essential to maintain the cell shape and for infection. So, its disruption can have serious effects on cell growth and morphology, resulting in cell death. Hence, it is considered a good antifungal target. In this study, we have performed an in silico approach to analyze the inhibitory potential of some polyphenols obtained from plants. Those can be considered important in targeting against the enzyme glucosamine-6-phosphate synthase (PDB-2VF5). The results of the study revealed that the binding affinity of complexes theaflavin and 3-o-malonylglucoside have significant docking scores and binding free energy followed by significant ADMET parameters that predict the drug-likeness property and toxicity of polyphenols as potential ligands. A molecular dynamic simulation was used to test the validity of the docking scores, and it showed that the complex remained stable during the period of the simulation, which ranged from 0 to 100 ns. Theaflavins and 3-o-malonylglucoside may be effective against Candida albicans using a computer-aided drug design methodology that will further enable researchers for future in vitro and in vivo studies, according to our in silico study.Communicated by Ramaswamy H. Sarma.


Subject(s)
Candida albicans , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing) , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/chemistry , Polyphenols/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Molecular Dynamics Simulation , Molecular Docking Simulation
10.
J Biomol Struct Dyn ; 41(10): 4696-4710, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35532095

ABSTRACT

Targeting kinases with oncogenic driver mutations in malignancies with allosteric kinase inhibitors is a promising new treatment technique. EGFR inhibitors targeting the L858R/T790M/C797S mutation bearing thiazolidine-4-one scaffold were discovered, optimized, synthesized, and biologically evaluated. According to in silico and in vitro studies, compounds 6a and 6b resulted to be highly potent with IC50 values of 120 nM and 134 nM and good selectivity. Compound 6a displayed significant antioxidant activity, with a DPPH radical scavenging value of 92.15%. The potency of compounds was also compared with ADMET and molecular dynamics simulations study. A comparative simulation of model protein and protein-ligand complex in presence and absence of compound 6a has been carried out.Communicated by Ramaswamy H. Sarma.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Molecular Dynamics Simulation , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/chemistry , Mutation
11.
Mol Divers ; 27(4): 1809-1827, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36214960

ABSTRACT

An efficient one-pot three-component reaction for the synthesis of [1,3]dioxolo[4',5':6,7]chromeno[2,3-b]pyridines 4(a-i) has been developed. Synthesis was achieved by reacting sesamol (1), aromatic aldehydes 2(a-i), and 2-aminopropene-1,1,3-tricarbonitrile (3) in the presence of triethylamine at 100 °C under neat reaction condition. Simple operational procedure, broad substrate scope, column chromatography free separations, and high yield of products make it an efficient and largely acceptable synthetic strategy. Synthesized compounds 4(a-i) were further screened for preliminary anticonvulsant activity using MES and scPTZ tests. These analogs were also checked for neurotoxicity and hepatotoxicity. Selected active compounds have been then screened quantitatively to determine ED50 and TD50 values. Analog 4h was found effective in both preclinical seizure models with significant therapeutic/toxicity profile (4h: ED50 = 34.7 mg/kg, MES test; ED50 = 37.9 mg/kg, scPTZ test; TD50 = 308.7 mg/kg). Molecular dynamic simulation for 100 ns of compound 4h-complexed with GABAA receptor revealed good thermodynamic behavior and fairly stable interactions (4h, Docking score = - 10.94). In conclusion, effective synthetic strategy, significant anticonvulsant activity with good toxicity profile and detailed molecular modeling studies led us to anticipate the emergence of these analogs as valid leads for the development of future effective neurotherapeutic agents.


Subject(s)
Anticonvulsants , Pyridines , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Anticonvulsants/chemistry , Structure-Activity Relationship , Pyridines/pharmacology , Pyridines/therapeutic use , Receptors, GABA-A , Molecular Dynamics Simulation , Drug Design , Molecular Structure
12.
Eur J Med Chem ; 245(Pt 1): 114889, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36375337

ABSTRACT

Here in, we report the design, synthesis and in vitro anticancer activity of a novel series of 24 quinoline analogues of substituted amide and sulphonamide derivatives. The anticancer activity of the synthesised compounds was evaluated against the HCC827, H1975 (L858R/T790 M), A549 (WT EGFR), A-549 and BEAS-2B cell lines. The majority of quinoline compounds demonstrated a significant cytotoxic effect. Compound 21 was found to be the most potent, with IC50 values of 0.010 µM, 0.21 µM, 0.99 µM and 2.99 µM as compared to Osimertinib with IC50 values with of 0.0042 µM, 0.04 µM, 0.92 µM and 2.67 µM. Compound 21 exhibited promising inhibitory enzymatic activity against the EGFR L858R/T790 M with IC50 value of 138 nM, comparable to Osimertinib's 110 nM. Employing a Western blot assay on the phosphorylation of EGFR and the signalling pathways transmission in HCC827 cells, the anticancer activity of the synthesised compounds 18 and 21 was evaluated in terms of its mechanism of action. All the compounds were subjected to a comparative molecular docking study against various EGFR enzyme types, including the wild-type (PDB: 4I23) and T790 M mutant (PDB: 2JIV) enzymes. Furthermore, compounds were examined at the allosteric binding site of the EGFR enzyme with the L858R/T790 M/C797S mutation (PDB ID: 5D41). The MD simulation study was also performed for EGFR-compound 21 complex which indicates the stability compound 21 in both ATP and allosteric site of enzyme. Further, in silico ADME prediction studies of all derivatives were found promising, signifying the drug like properties.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Drug Design , ErbB Receptors , Lung Neoplasms , Quinolines , Humans , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology
13.
Bioorg Med Chem Lett ; 67: 128747, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35476959

ABSTRACT

For developing novel therapeutic agents with good anticancer activities, a series of novel pyridine-pyrimidine hybrid phosphonate derivatives4(a-q) were synthesized by the Kabachnik-Fields method using CAN as catalyst. The compound 4o exhibited the most potent anticancer activity with an IC50 value of 13.62 µM, 17.49 µM, 5.81 µM, 1.59 µM and 2.11 µM against selected cancer cell lines A549, Hep-G2, HeLa, MCF-7, and HL-60, respectively. Compound 4o displayed seven times more selectivity towards Hep-G2 cancer cell lines compared to the human normal hepatocyte cell line LO2 (IC50 value 95.33 µM). Structure-Activity Relationship (SAR) studies were conducted on the variation in the aromatic ring (five-membered heterocyclic ring, six-membered heterocyclic ring) and the variation of substituents on the phenyl ring (electron donating groups, electron withdrawing groups). Furthermore, the mechanism of anticancer activity was clarified by further explorations in bioactivity by using in vitro aurora kinase inhibitory activity and molecular docking studies. The results showed that the compound 4o at IC50concentrationdemonstrated distinctive morphological changes such as cell detachment, cell wall deformation, cell shrinkage and reduced number of viable cells in cancer cell lines. Compound 4o induced early apoptosis and late apoptosis of 27.7% and 6.1% respectively.


Subject(s)
Antineoplastic Agents , Organophosphonates , Antineoplastic Agents/pharmacology , Aurora Kinases , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Organophosphonates/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Structure-Activity Relationship
14.
Comb Chem High Throughput Screen ; 25(1): 149-166, 2022.
Article in English | MEDLINE | ID: mdl-33280593

ABSTRACT

BACKGROUND: Lung cancer has become the prominent cause of the cancer-related deaths globally. More than 80 % of all lung cancers have been diagnosed with Non- Small Cell Lung Cancer (NSCLC). The USFDA approved osimertinib to treat patients with metastatic T790M EGFR NSCLC on a regular basis in March 2017. Recently, C797S mutation to osimertinib has been reported, which indicates the need for structural modification to overcome the problem of mutation. METHODS: In this bioinformatics study, we have evaluated the impact of various acrylamide as an electrophilic warhead on the activity and selectivity of osimertinib. RESULT: Osimertinib analouge 48, 50, 60, 61, 67, 75, 80, 86, 89, 92, 93, 116 and 124 were the most active and selective compounds against T790M EGFR mutants compared to Osimertinib. CONCLUSION: These compounds also showed less inclination towards WT-EGFR.


Subject(s)
ErbB Receptors , Lung Neoplasms , Acrylamide/pharmacology , Acrylamide/therapeutic use , Acrylamides/chemistry , Acrylamides/pharmacology , Acrylamides/therapeutic use , Aniline Compounds/chemistry , ErbB Receptors/genetics , Humans , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology
15.
J Biomol Struct Dyn ; 40(22): 11914-11931, 2022.
Article in English | MEDLINE | ID: mdl-34431452

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV-2), a novel member of the betacoronavirus family is a single-stranded RNA virus that has spread worldwide prompting the World Health Organization to declare a global pandemic. This creates an alarming situation and generates an urgent need to develop innovative therapeutic agents. In this context, an in silico molecular docking and molecular dynamics (MD) simulation study on the existing 58 antiviral and antimalarial compounds was performed on 3CLpro, PLpro and RdRp SARS-CoV-2 proteins. The antiviral compounds are best fitted in the binding pockets and interact more profoundly with the amino acid residues compared to antimalarial compounds. An HIV protease inhibitor, saquinavir showed a good dock score and binding free energy with varied binding interactions against 3CLpro and PLpro. While, adefovir, a nucleotide HBV DNA polymerase inhibitor exhibited good dock score and binding interactions against RdRp. Although, the antimalarial compounds showed relatively less dock score but were found to be crucial in displaying essential binding interactions with these proteins. The MD simulation runs for 100 ns on 3CLpro-saquinavir, PLpro-saquinavir and RdRp-adefovir complexes using Desmond revealed fairly stable nature of interactions. This study helped in understanding the key interactions of the vital functionalities that provide a concrete base to develop lead molecules effective against SARS-CoV-2.


Subject(s)
Antimalarials , COVID-19 , Humans , SARS-CoV-2 , Molecular Docking Simulation , Antiviral Agents/chemistry , Antimalarials/pharmacology , Saquinavir/pharmacology , Molecular Dynamics Simulation , RNA-Dependent RNA Polymerase/chemistry
16.
J Biomol Struct Dyn ; 40(20): 10437-10453, 2022.
Article in English | MEDLINE | ID: mdl-34182889

ABSTRACT

Due to the unavailability specific drugs or vaccines (FDA approved) that can cure COVID-19, the development of potent antiviral drug candidates/therapeutic molecules against COVID-19 is urgently required. This study was aimed at in silico screening and study of polyphenolic phytochemical compounds in a rational way by virtual screening, molecular docking and molecular dynamics studies against SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) enzymes. The objective of the study was to identify plant-derived polyphenolic compounds and/or flavonoid molecules as possible antiviral agents with protease inhibitory potential against SARS-CoV-2. In this study, we report plant-derived polyphenolic compounds (including flavonoids) as novel protease inhibitors against SARS-CoV-2. From virtual docking and molecular docking study, 31 polyphenolic compounds were identified as active antiviral molecules possessing well-defined binding affinity with acceptable ADMET, toxicity and lead-like or drug-like properties. Six polyphenolic compounds, namely, enterodiol, taxifolin, eriodictyol, leucopelargonidin, morin and myricetin were found to exhibit remarkable binding affinities against the proteases with taxifolin and morin exhibiting the highest binding affinity toward Mpro and PLpro respectively. Molecular dynamics simulation studies of these compounds in complex with the proteases showed that the binding of the compounds is characterized by structural perturbations of the proteases suggesting their antiviral activities. These compounds can therefore be investigated further by in vivo and in vitro techniques to assess their potential efficacy against SARS-CoV-2 and thus serve as the starting point for the development of potent antiviral agents against the deadly COVID-19.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Coronavirus Papain-Like Proteases , Protease Inhibitors , SARS-CoV-2 , Antiviral Agents/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Papain , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors
17.
Curr HIV Res ; 19(6): 535-547, 2021.
Article in English | MEDLINE | ID: mdl-34525923

ABSTRACT

BACKGROUND: This paper reports the synthesis, Non-nucleoside reverse transcriptase inhibitory (NNRTIs) activity and computational studies of 2-((4-chloro-2-subtitutedphenoxy) methyl)-4-(furan-2-ylmethylene)-1-substituted Pyridine/-pyrimidine-1H-imidazol-5(4H)-ones. METHODS: The imidazol-5-one analogs were synthesized by conventional method and characterized by FT-IR, NMR and mass spectral data. All compounds were evaluated for in-vitro NNRTI activity by using reverse transcriptase (RT) assay kit (Roche). The in-silico docking studies were conducted on RT enzyme to investigate binding site interactions of synthesized compounds. The MMGBSA method was also used to calculate the binding free energy between the inhibitors and RT enzyme. The MD simulation was further performed for the apo form of the RT enzyme and docked complex of compound A6-RT enzyme to better understand the stability of the protein-ligand complex. RESULTS: The bioactivity analysis revealed that most of the synthesized compounds showed significant inhibitory activity against RT enzyme and the IC50 value was found to be in the range of 1.76-3.88 µM. The computational studies suggest that the docked compounds form the H-bonding with amino acid residue Lys101 and hydrophobic interactions with amino acid residues Tyr188, Tyr181, Trp229, and Tyr318, which act as the primary driving forces for protein-ligand interaction. CONCLUSION: The reported imidazol-5-one analogs can act as lead for further development of prospective RT inhibitors.


Subject(s)
HIV Infections , HIV-1 , Amino Acids , HIV Reverse Transcriptase , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Prospective Studies , Pyridines/pharmacology , Pyrimidines/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Spectroscopy, Fourier Transform Infrared
18.
Bioorg Chem ; 115: 105174, 2021 10.
Article in English | MEDLINE | ID: mdl-34314913

ABSTRACT

Novel non-camptothecin (non-CPT) class of conformationally constrained, hitherto unknown 7,12-dihydrodibenzo[b,h][1,6] naphthyridine and 7H-Chromeno[3,2-c] quinoline derivatives have been designed, synthesized and evaluated for anti-cancer activity. In vitro anti-proliferation evaluation against human cancer cell lines (A549 and MCF-7) exhibited significant cytotoxicity. Among the derivatives (8-24), 8 (IC50 0.44 µM and IC50 0.62 µM) and 12 (IC50 0.69 µM and IC50 0.54 µM) were identified as the most promising candidate against A-549 and MCF-7 cancer cell lines respectively. Topo I inhibitory activity of 8 and 12 suggested that, they may be developed as potential anti-cancer molecules in future and rationalized by docking analysis with effective binding modes. Further, in silico ADME prediction studies of all derivatives were found promising, signifying the drug like properties. In precise, the present investigation displays a new strategy to synthesize and emphasis on anticancer activities of conformationally constrained dibenzo[b,h][1,6] naphthyridine derivatives and Chromeno[3,2-c] quinoline derivatives in the context of cancer drug development and refinement.


Subject(s)
Naphthyridines/chemistry , Naphthyridines/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Design , Humans , Molecular Docking Simulation , Naphthyridines/chemical synthesis , Quinolines/chemical synthesis , Topoisomerase I Inhibitors/chemical synthesis
19.
Bioorg Med Chem Lett ; 40: 127916, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33689875

ABSTRACT

A library of novel flavonoid derivatives with diverse heterocyclic groups was designed and efficiently synthesized. Structures of the newly synthesized compounds 4a-i and 8a-l have been characterized by 1H NMR, 13C NMR, MS and elemental analysis. Anticancer activities were evaluated against MCF-7, A549, HepG2 and MCF-10A by MTT based assay. Compared with the positive control Adriamycin, compounds 4a, 4b, 4c, 4d, 8d, 8e and 8j were found to be most active anti-proliferative compounds against human cancer cell line. We found that compounds 4a and 4c exhibited inhibition of enzyme topoisomerase II with IC50 values 10.28 and 12.38 µM, respectively. In silico docking study of synthesized compounds showed that compounds 4a and 4c have good binding affinity toward topoisomerase IIα enzyme and have placed in between DNA base pair at active site of enzyme. In silico ADME prediction results that flavonoid coumarin analogues 4a-i could be exploited as an oral drug candidate.


Subject(s)
Antineoplastic Agents/chemical synthesis , DNA Topoisomerases, Type II/metabolism , Flavonoids/chemical synthesis , Topoisomerase II Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Chromones/chemistry , Computer Simulation , Coumarins/chemistry , DNA Cleavage/drug effects , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Etoposide/pharmacology , Flavonoids/pharmacology , Humans , Imidazoles/chemistry , Protein Binding , Structure-Activity Relationship , Topoisomerase II Inhibitors/pharmacology
20.
J Biomol Struct Dyn ; 39(8): 2838-2856, 2021 May.
Article in English | MEDLINE | ID: mdl-32276580

ABSTRACT

Third generation EGFR inhibitor osimertinib was approved as the first-line treatment for EGFR T790M mutation-positive Non-Small Cell Lung Cancer (NSCLC) patients in 2017. However, EGFR tertiary Cys797 to Ser797 (C797S) point mutation emanate rapidly after treatment of osimertinib, which is undruggable mutation to the all existing drugs. In this work, we have reported the novel T790M/C797S-EGFR Tyrosine Kinase inhibitors using BREED based de novo hybridization approach. BREED generates novel inhibitors from structures of known ligands bound to a common target. Among the generated hybridised breed compounds, the top best scorer breed molecules were breed 436, breed 530, breed 450, breed 562 and breed 313. Molecular Dynamics simulation of breed 436 for 10 ns further suggested that docked compound was stable into the pocket of the T790M/C797S-EGFR Tyrosine Kinase. In silico pharmacokinetic predictions of the breed hybridised compounds were within the defined range described for human use.Communicated by Ramaswamy H. Sarma.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Aniline Compounds , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...