Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 8(1): 4285, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29511294

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

2.
Sci Rep ; 7(1): 13417, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042637

ABSTRACT

The protein ataxin-3 carries a polyglutamine stretch close to the C-terminus that triggers a neurodegenerative disease in humans when its length exceeds a critical threshold. A role as a transcriptional regulator but also as a ubiquitin hydrolase has been proposed for this protein. Here, we report that, when expressed in the yeast Pichia pastoris, full-length ataxin-3 enabled almost normal growth at 37 °C, well above the physiological optimum of 30 °C. The N-terminal Josephin domain (JD) was also effective but significantly less, whereas catalytically inactive JD was completely ineffective. Based on MudPIT proteomic analysis, we observed that the strain expressing full-length, functional ataxin-3 displayed persistent upregulation of enzymes involved in mitochondrial energy metabolism during growth at 37 °C compared with the strain transformed with the empty vector. Concurrently, in the transformed strain intracellular ATP levels at 37 °C were even higher than normal ones at 30 °C. Elevated ATP was also paralleled by upregulation of enzymes involved in both protein biosynthesis and biosynthetic pathways, as well as of several stress-induced proteins. A similar pattern was observed when comparing a strain expressing JD with another expressing its catalytically inactive counterpart. We suggest that such effects mostly result from mechanisms of transcriptional regulation.


Subject(s)
Ataxin-3/genetics , Fungal Proteins/genetics , Heat-Shock Response , Pichia/metabolism , Adenosine Triphosphate/metabolism , Ataxin-3/chemistry , Ataxin-3/metabolism , Energy Metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Pichia/genetics
3.
Microb Cell Fact ; 14: 19, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25889802

ABSTRACT

BACKGROUND: Antibodies raised against selected antigens over-expressed at the cell surface of malignant cells have been chemically conjugated to protein toxin domains to obtain immunotoxins (ITs) able to selectively kill cancer cells. Since latest generation immunotoxins are composed of a toxic domain genetically fused to antibody fragment(s) which confer on the IT target selective specificity, we rescued from the hydridoma 4KB128, a recombinant single-chain variable fragment (scFv) targeting CD22, a marker antigen expressed by B-lineage leukaemias and lymphomas. We constructed several ITs using two enzymatic toxins both able to block protein translation, one of bacterial origin (a truncated version of Pseudomonas exotoxin A, PE40) endowed with EF-2 ADP-ribosylation activity, the other being the plant ribosome-inactivating protein saporin, able to specifically depurinate 23/26/28S ribosomal RNA. PE40 was selected because it has been widely used for the construction of recombinant ITs that have already undergone evaluation in clinical trials. Saporin has also been evaluated clinically and has recently been expressed successfully at high levels in a Pichia pastoris expression system. The aim of the present study was to evaluate optimal microbial expression of various IT formats. RESULTS: An anti-CD22 scFv termed 4KB was obtained which showed the expected binding activity which was also internalized by CD22+ target cells and was also competed for by the parental monoclonal CD22 antibody. Several fusion constructs were designed and expressed either in E. coli or in Pichia pastoris and the resulting fusion proteins affinity-purified. Protein synthesis inhibition assays were performed on CD22+ human Daudi cells and showed that the selected ITs were active, having IC50 values (concentration inhibiting protein synthesis by 50% relative to controls) in the nanomolar range. CONCLUSIONS: We undertook a systematic comparison between the performance of the different fusion constructs, with respect to yields in E. coli or P. pastoris expression systems and also with regard to each constructs specific killing efficacy. Our results confirm that E. coli is the system of choice for the expression of recombinant fusion toxins of bacterial origin whereas we further demonstrate that saporin-based ITs are best expressed and recovered from P. pastoris cultures after yeast codon-usage optimization.


Subject(s)
ADP Ribose Transferases/metabolism , Bacterial Toxins/metabolism , Exotoxins/metabolism , Immunotoxins/metabolism , Recombinant Fusion Proteins/metabolism , Ribosome Inactivating Proteins, Type 1/metabolism , Single-Chain Antibodies/metabolism , Virulence Factors/metabolism , ADP Ribose Transferases/genetics , Bacterial Toxins/genetics , Blotting, Western , Burkitt Lymphoma/genetics , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Escherichia coli/genetics , Escherichia coli/metabolism , Exotoxins/genetics , Humans , Immunotoxins/genetics , Pichia/genetics , Pichia/metabolism , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Recombinant Fusion Proteins/pharmacology , Ribosome Inactivating Proteins, Type 1/genetics , Saporins , Sialic Acid Binding Ig-like Lectin 2/immunology , Sialic Acid Binding Ig-like Lectin 2/metabolism , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Virulence Factors/genetics , Pseudomonas aeruginosa Exotoxin A
4.
Plant J ; 72(6): 1015-26, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22966775

ABSTRACT

The glutenin fraction of wheat storage proteins consists of large polymers in which high- and low-molecular-weight subunits are connected by inter-chain disulfide bonds. We found that assembly of a low-molecular-weight glutenin subunit in the endoplasmic reticulum is a rapid process that leads to accumulation of various oligomeric forms, and that this assembly is sensitive to perturbation of the cellular redox environment. In endoplasmic reticulum-derived microsomes, low-molecular-weight glutenin subunits are subjected to hyper-polymerization, indicating that cytosolic factors play an important role in limiting polymer size. Addition of physiological concentrations of reduced glutathione is sufficient to maintain the original polymerization pattern of the glutenin subunits upon cytosol dilution. Furthermore, we show that a low-molecular-weight glutenin subunit can be glutathionylated in endoplasmic reticulum-derived microsomes, and that it can be directly reduced by glutathione in vitro. These results indicate that glutenin polymerization is sensitive to changes in the redox state of the cell, and suggest that the presence of a reducing cytosolic environment plays an important role in regulating disulfide bond formation in the endoplasmic reticulum of plant cells.


Subject(s)
Glutens/metabolism , Triticum/metabolism , Endoplasmic Reticulum/metabolism , Gene Expression , Glutathione/metabolism , Molecular Weight , Oxidation-Reduction , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Polymerization , Protein Folding , Protoplasts , Nicotiana/genetics , Nicotiana/metabolism , Transgenes , Triticum/genetics
5.
J Biomol Struct Dyn ; 29(3): 425-39, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22066531

ABSTRACT

The human epidermal growth factor receptor 2 (HER2) is the main diagnostic marker of breast and ovary cancers. Here, to obtain a rapid and sensitive immunodiagnostic tool a single-chain antibody (scFv800E6) specific for the HER2 was fused to the N-terminus of the enhanced green fluorescent protein (EGFP) by a flexible linker. The soluble production of the novel scFv800E6-EGFP protein in the cytoplasm of Escherichia coli was investigated at different induction temperatures (25, 30 and 37°C); the intrinsic fluorescent properties and the binding activity to HER2 positive tumour cells of the fusion protein were analysed. Western blotting and fluorescence analysis of SDS-PAGE revealed the presence of two scFv800E6-EGFP forms, with different mobility and optical properties, their ratio depending on the induction temperature. The fluorescent form maintained the optical fluorescence properties of EGFP and exhibited a binding activity to the HER2-expressing cells comparable to that of the non-fused scFv800E6. In addition, to provide an insight into the effect of the induction temperature on the molecular structure, the folding of the fusion protein was assessed at atomic level by performing molecular dynamics simulations of the homology-derived model of scFv800E6-EGFP at 300 K and 310 K. The comparison of the data collected at these two temperatures revealed that the higher temperature affects specific structural elements. To improve the production of the soluble and functional scFv800E6-EGFP protein, "in silico" results could be utilised for ad hoc design of the molecular structure.


Subject(s)
Cytoplasm/metabolism , Green Fluorescent Proteins/chemistry , Receptor, ErbB-2/metabolism , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/chemistry , Binding Sites , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Molecular Dynamics Simulation , Receptor, ErbB-2/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Temperature
6.
Appl Microbiol Biotechnol ; 91(3): 613-21, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21538107

ABSTRACT

The human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase receptor overexpressed in 30% of human breast cancers. One of the mechanisms by which tumor cell proliferation can be inhibited consists in hampering HER2 dimerization by targeting its extracellular domain with specific antibodies. In recent clinical practice, a valuable alternative to entire IgGs resides in the use of smaller molecules, such as single-chain variable fragments (scFv), developed for selective molecular targeting. In this paper, we report on the production and purification of a soluble anti-HER2 scFv antibody secreted by Pichia pastoris. The gene encoding scFv800E6 with an additional 6× His-tag at the 3'-end was inserted into the expression vector pPICZα and transformed in P. pastoris. The highest expression level was obtained in presence of 0.5% methanol and 0.8% glycerol in the culture medium after 48 h of induction. The use of P. pastoris proved very valuable as an expression system, allowing the isolation of 10 mg/L of highly purified antibody, remarkably higher than previously reported data. The functionality of purified anti-HER2 scFv was assessed by cytofluorimetry and immunofluorescence on HER2-positive MCF7 breast cancer cells, showing good affinity and high selectivity for the target membrane receptor. These findings confirm that P. pastoris is a suitable host for high level expression of antibody fragments and highlight the potential role of scFv800E6 in diagnostic and therapeutic application.


Subject(s)
Breast Neoplasms/immunology , Pichia/metabolism , Protein Engineering/methods , Receptor, ErbB-2/immunology , Single-Chain Antibodies/isolation & purification , Cell Line, Tumor , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Microscopy, Confocal , Pichia/cytology , Pichia/genetics , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
7.
Toxins (Basel) ; 2(11): 2699-737, 2010 11.
Article in English | MEDLINE | ID: mdl-22069572

ABSTRACT

Ribosome-inactivating proteins (RIPs) are EC3.2.32.22 N-glycosidases that recognize a universally conserved stem-loop structure in 23S/25S/28S rRNA, depurinating a single adenine (A4324 in rat) and irreversibly blocking protein translation, leading finally to cell death of intoxicated mammalian cells. Ricin, the plant RIP prototype that comprises a catalytic A subunit linked to a galactose-binding lectin B subunit to allow cell surface binding and toxin entry in most mammalian cells, shows a potency in the picomolar range. The most promising way to exploit plant RIPs as weapons against cancer cells is either by designing molecules in which the toxic domains are linked to selective tumor targeting domains or directly delivered as suicide genes for cancer gene therapy. Here, we will provide a comprehensive picture of plant RIPs and discuss successful designs and features of chimeric molecules having therapeutic potential.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Plant Proteins/therapeutic use , Ribosome Inactivating Proteins/therapeutic use , Animals , Disease Models, Animal , Humans , Immunotoxins/therapeutic use , Mice , Molecular Sequence Data , Molecular Targeted Therapy , Plant Diseases/therapy , Plant Proteins/chemistry , Protein Structure, Tertiary , Rats , Ribosome Inactivating Proteins/chemistry , Ribosome Inactivating Proteins/immunology , Ricin/chemistry , Ricin/therapeutic use , Sequence Analysis, Protein
8.
Protein Eng Des Sel ; 23(2): 61-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19933699

ABSTRACT

A critical problem in studying ribosome-inactivating proteins (RIPs) lies in the very limited possibility to produce them in heterologous systems. In fact, their inherent toxicity for the producing organism nearly always prevents their recombinant expression. In this study, we designed, expressed and characterized an engineered form of the RIP saporin (SapVSAV), bearing a C-terminal extra sequence that is recognized and bound by the second PDZ domain from murine PTP-BL protein (PDZ2). The co-expression of SapVSAV and PDZ2 in Escherichia coli BL21 cells greatly enhances the production of the toxin in a soluble form. The increase of production was surprisingly not due to protection from bacterial intoxication, but may arise from a stabilization effect of PDZ2 on the toxin molecule during biosynthesis. We found that once purified, SapVSAV is stable but is not toxic to free ribosomes, while it is fully active against human cancer cells. This strategy of co-expression of a toxin moiety and a soluble PDZ domain may represent a new system to increase the production of recombinant toxic proteins and could allow the selection of new extra sequences to target PDZ domains inside specific mammalian cellular domains.


Subject(s)
PDZ Domains , Protein Engineering/methods , Protein Synthesis Inhibitors/metabolism , Ribosome Inactivating Proteins, Type 1/genetics , Ribosome Inactivating Proteins, Type 1/metabolism , Animals , Cell Line , Escherichia coli/genetics , Gene Expression , Humans , Protein Synthesis Inhibitors/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Ribosome Inactivating Proteins, Type 1/isolation & purification , Saporins , Transfection
9.
FASEB J ; 24(1): 253-65, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19786581

ABSTRACT

Most of the targeting moieties, such as antibody fragments or growth factor domains, used to construct targeted toxins for anticancer therapy derive from secretory proteins. These normally fold in the oxidative environment of the endoplasmic reticulum, and hence their folding in bacterial cells can be quite inefficient. For instance, only low amounts of properly folded antimetastatic chimera constituted by the amino-terminal fragment of human urokinase (ATF) fused to the plant ribosome-inactivating protein saporin could be recovered. ATF-saporin was instead secreted efficiently when expressed in eukaryotic cells protected from autointoxication with neutralizing anti-saporin antibodies. Pichia pastoris is a microbial eukaryotic host where these domains can fold into a transport-competent conformation and reach the extracellular medium. We show here that despite some host toxicity codon-usage optimization greatly increased the expression levels of active saporin but not those of an active-site mutant SAP-KQ in GS115 (his4) strain. The lack of any toxicity associated with expression of the latter confirmed that toxicity is due to saporin catalytic activity. Nevertheless, GS115 (his4) cells in flask culture secreted 3.5 mg/L of a histidine-tagged ATF-saporin chimera showing an IC(50) of 6 x 10(-11) M against U937 cells, thus demonstrating the suitability of this expression platform for secretion of toxic saporin-based chimeras.


Subject(s)
Immunotoxins/genetics , Immunotoxins/metabolism , N-Glycosyl Hydrolases/biosynthesis , N-Glycosyl Hydrolases/genetics , Pichia/genetics , Pichia/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Ribosome Inactivating Proteins, Type 1/biosynthesis , Ribosome Inactivating Proteins, Type 1/genetics , Urokinase-Type Plasminogen Activator/biosynthesis , Urokinase-Type Plasminogen Activator/genetics , Base Sequence , Binding Sites/genetics , Codon/genetics , DNA Primers/genetics , Gene Expression , Humans , Models, Biological , Mutagenesis, Site-Directed , N-Glycosyl Hydrolases/toxicity , Plant Proteins/toxicity , Protein Processing, Post-Translational , Recombinant Fusion Proteins/toxicity , Ribosome Inactivating Proteins, Type 1/toxicity , Saporins , Transformation, Genetic , U937 Cells , Urokinase-Type Plasminogen Activator/toxicity
10.
Plant Physiol ; 149(1): 412-23, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19005088

ABSTRACT

Wheat (Triticum spp.) grains contain large protein polymers constituted by two main classes of polypeptides: the high-molecular-weight glutenin subunits and the low-molecular-weight glutenin subunits (LMW-GS). These polymers are among the largest protein molecules known in nature and are the main determinants of the superior technological properties of wheat flours. However, little is known about the mechanisms controlling the assembly of the different subunits and the way they are arranged in the final polymer. Here, we have addressed these issues by analyzing the formation of interchain disulfide bonds between identical and different LMW-GS and by studying the assembly of mutants lacking individual intrachain disulfides. Our results indicate that individual cysteine residues that remain available for disulfide bond formation in the folded monomer can form interchain disulfide bonds with a variety of different cysteine residues present in a companion subunit. These results imply that the coordinated expression of many different LMW-GS in wheat endosperm cells can potentially lead to the formation of a large set of distinct polymeric structures, in which subunits can be arranged in different configurations. In addition, we show that not all intrachain disulfide bonds are necessary for the generation of an assembly-competent structure and that the retention of a LMW-GS in the early secretory pathway is not dependent on polymer formation.


Subject(s)
Endoplasmic Reticulum/metabolism , Glutens/biosynthesis , Protein Folding , Triticum/metabolism , Molecular Sequence Data , Plants, Genetically Modified/metabolism , Protoplasts/metabolism , Nicotiana/metabolism
11.
J Transl Med ; 4: 39, 2006 Sep 29.
Article in English | MEDLINE | ID: mdl-17010186

ABSTRACT

BACKGROUND: Aberrant signaling by ErbB-2 (HER 2, Neu), a member of the human Epidermal Growth Factor (EGF) receptor family, is associated with an aggressive clinical behaviour of carcinomas, particularly breast tumors. Antibodies targeting the ErbB-2 pathway are a preferred therapeutic option for patients with advanced breast cancer, but a worldwide deficit in the manufacturing capacities of mammalian cell bioreactors is foreseen. METHODS: Herein, we describe a multi-platform approach for the production of recombinant Single chain Fragments of antibody variable regions (ScFvs) to ErbB-2 that involves their functional expression in (a) bacteria, (b) transient as well as stable transgenic tobacco plants, and (c) a newly developed cell-free transcription-translation system. RESULTS: An ScFv (ScFv800E6) was selected by cloning immunoglobulin sequences from murine hybridomas, and was expressed and fully functional in all the expression platforms, thereby representing the first ScFv to ErbB-2 produced in hosts other than bacteria and yeast. ScFv800E6 was optimized with respect to redox synthesis conditions. Different tags were introduced flanking the ScFv800E6 backbone, with and without spacer arms, including a novel Strep II tag that outperforms conventional streptavidin-based detection systems. ScFv800E6 was resistant to standard chemical radiolabeling procedures (i.e. Chloramine T), displayed a binding ability extremely similar to that of the parental monovalent Fab' fragment, as well as a flow cytometry performance and an equilibrium binding affinity (Ka approximately 2 x 10(8) M(-1)) only slightly lower than those of the parental bivalent antibody, suggesting that its binding site is conserved as compared to that of the parental antibody molecule. ScFv800E6 was found to be compatible with routine reagents for immunohistochemical staining. CONCLUSION: ScFv800E6 is a useful reagent for in vitro biochemical and immunodiagnostic applications in oncology, and a candidate for future in vivo studies.

12.
Protein Expr Purif ; 44(1): 10-5, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16125411

ABSTRACT

Recombinant antibody fragments represent useful tools for cancer diagnosis and therapy. Aberrant expression of the HER2 receptor is implicated in metastatic breast and ovary cancers, two malignancies with a high prevalence in young women. In this study, we focussed on a single-chain fragment of variable antibody regions specific for HER2 (scFv800E6) that can be expressed in a functional form in the cytoplasm of Escherichia coli. ScFv800E6 was extracted from bacterial cultures following induction at different temperatures and purified. The yield of both soluble and insoluble forms was measured. We found that scFv800E6 was functional when expressed in the soluble fraction in the bacteria cytosol. In addition, scFv800E6 extracted from inclusion bodies was easily refolded and largely recovered its functionality. Thus, scFv800E6 is intrinsically capable of efficient and functional folding in a reducing environment and represents one of the few described antibody fragments with a framework well adapted for cytoplasmic expression.


Subject(s)
Antibodies, Monoclonal/genetics , Escherichia coli , Gene Expression , Immunoglobulin Variable Region/genetics , Receptor, ErbB-2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Escherichia coli/genetics , Escherichia coli/growth & development , Gene Expression/genetics , Humans , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/isolation & purification , Mice , Oxidation-Reduction , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...