Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(10): 4039-4047, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38422552

ABSTRACT

Trace element concentrations in toenail clippings have increasingly been used to measure trace element exposure in epidemeological research. Conventional methods such as inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography ICP-MS (HPLC-ICP-MS) are commonly used to measure trace elements and their speciation in toenails. However, the impact of the removal of external contamination on trace element quantification has not been thoroughly studied. In this work, the microdistribution of trace elements (As, Ca, Co, Cu, Fe, K, Mn, Ni, Rb, S, Sr, Ti, and Zn) in dirty and washed toenails and the speciation of As in situ in toenails were investigated using synchrotron X-ray fluorescence microscopy (XFM) and laterally resolved X-ray absorption near edge spectroscopy (XANES). XFM showed different distribution patterns for each trace element, consistent with their binding properties and nail structure. External (terrestrial) contamination was identified and distinguished from the endogenous accumulation of trace elements in toenails─contaminated areas were characterized by the co-occurrence of Co, Fe, and Mn with elements such as Ti and Rb (i.e., indicators of terrestrial contamination). The XANES spectra showed the presence of one As species in washed toenails, corresponding to As bound to sulfhydryl groups. In dirty specimens, a mixed speciation was found in localized areas, containing AsIII-S species and AsV species. ArsenicV is thought to be associated with surface contamination and exogenous As. These findings provide new insights into the speciation of arsenic in toenails, the microdistribution of trace elements, and the effectiveness of a cleaning protocol in removing external contamination.


Subject(s)
Arsenic , Trace Elements , Arsenic/analysis , Trace Elements/analysis , Nails/chemistry , X-Ray Absorption Spectroscopy
2.
Environ Sci Technol ; 58(1): 440-448, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38108297

ABSTRACT

A novel binding layer (BL) as part of the diffusive gradients in thin films (DGT) technique was developed for the two-dimensional visualization and quantification of labile phosphorus (P) in soils. This BL was designed for P detection by synchrotron-based X-ray fluorescence microscopy (XFM). It differs from the conventional DGT BL as the hydrogel is eliminated to overcome the issue that the fluorescent X-rays of P are detected mainly from shallow sample depths. Instead, the novel design is based on a polyimide film (Kapton) onto which finely powdered titanium dioxide-based P binding agent (Metsorb) was applied, resulting in superficial P binding only. The BL was successfully used for quantitative visualization of P diffusion from three conventional P fertilizers applied to two soils. On a selection of samples, XFM analysis was confirmed by quantitative laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The XFM method detected significant differences in labile P concentrations and P diffusion zone radii with the P fertilizer incubation, which were explained by soil and fertilizer properties. This development paves the way for fast XFM analysis of P on large DGT BLs to investigate in situ diffusion of labile P from fertilizers and to visualize large-scale P cycling processes at high spatial resolution.


Subject(s)
Fertilizers , Phosphorus , Phosphorus/analysis , Phosphorus/chemistry , Fertilizers/analysis , X-Rays , Soil/chemistry , Diffusion , Microscopy, Fluorescence
3.
Chemosphere ; 331: 138850, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37146771

ABSTRACT

Pesticides play an important role in conventional agriculture by controlling pests, weeds, and plant diseases. However, repeated applications of pesticides may have long lasting effects on non-target microorganisms. Most studies have investigated the short-term effects of pesticides on soil microbial communities at the laboratory scale. Here, we assessed the ecotoxicological impact of fipronil (insecticide), propyzamide (herbicide) and flutriafol (fungicide) on (i) soil microbial enzymatic activities, (ii) potential nitrification, (iii) abundance of the fungal and bacterial community and key functional genes (nifH, amoA, chiA, cbhl and phosphatase) and (iii) diversity of bacteria, fungi, ammonia oxidizing bacteria (AOB) and archaea (AOA) after repeated pesticide applications in laboratory and field experiments. Our results showed that repeated applications of propyzamide and flutriafol affected the soil microbial community structure in the field and had significant inhibitory effects on enzymatic activities. The abundances of soil microbiota affected by pesticides recovered to levels similar to the control following a second application, suggesting that they might be able to recover from the pesticide effects. However, the persistent pesticide inhibitory effects on soil enzymatic activities suggests that the ability of the microbial community to cope with the repeated application was not accompanied by functional recovery. Overall, our results suggest that repeated pesticide applications may influence soil health and microbial functionalities and that more information should be collected to inform risk-based policy development.


Subject(s)
Pesticides , Soil , Soil/chemistry , Soil Microbiology , Oxidation-Reduction , Bacteria/genetics , Archaea/genetics , Pesticides/toxicity , Nitrification , Ammonia , Phylogeny
4.
Plant Physiol ; 191(3): 1520-1534, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36423229

ABSTRACT

The concentration, chemical speciation, and spatial distribution of essential and toxic mineral elements in cereal seeds have important implications for human health. To identify genes responsible for element uptake, translocation, and storage, high-throughput phenotyping methods are needed to visualize element distribution and concentration in seeds. Here, we used X-ray fluorescence microscopy (µ-XRF) as a method for rapid and high-throughput phenotyping of seed libraries and developed an ImageJ-based pipeline to analyze the spatial distribution of elements. Using this method, we nondestructively scanned 4,190 ethyl methanesulfonate (EMS)-mutagenized M1 rice (Oryza sativa) seeds and 533 diverse rice accessions in a genome-wide association study (GWAS) panel to simultaneously measure concentrations and spatial distribution of elements in the embryo, endosperm, and aleurone layer. A total of 692 putative mutants and 65 loci associated with the spatial distribution of elements in rice seed were identified. This powerful method provides a basis for investigating the genetics and molecular mechanisms controlling the accumulation and spatial variations of mineral elements in plant seeds.


Subject(s)
Genome-Wide Association Study , Oryza , Humans , X-Rays , Seeds/genetics , Minerals , Microscopy, Fluorescence , Oryza/genetics
5.
Chemosphere ; 307(Pt 2): 135820, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35944675

ABSTRACT

Pesticides are known to affect non-targeted soil microorganisms. Still, studies comparing the effect of multiple pesticides on a wide range of microbial endpoints associated with carbon cycling are scarce. Here, we employed fluorescence enzymatic assay and real-time PCR to evaluate the effect of 20 commercial pesticides, applied at their recommended dose and five times their recommended dose, on soil carbon cycling related enzymatic activities (α-1,4-glucosidase, ß-1,4-glucosidase, ß-d-cellobiohydrolase and ß-xylosidase), and on the absolute abundance of functional genes (cbhl and chiA), in three different South Australian agricultural soils. The effects on cellulolytic and chitinolytic microorganisms, and the total microbial community composition were determined using shotgun metagenomic sequencing in selected pesticide-treated and untreated samples. The application of insecticides significantly increased the cbhl and chiA genes absolute abundance in the acidic soil. At the community level, insecticide fipronil had the greatest stimulating effect on cellulolytic and chitinolytic microorganisms, followed by fungicide metalaxyl-M and insecticide imidacloprid. A shift towards a fungal dominated microbial community was observed in metalaxyl-M treated soil. Overall, our results suggest that the application of pesticides might affect the soil carbon cycle and may disrupt the formation of soil organic matter and structure stabilisation.


Subject(s)
Fungicides, Industrial , Insecticides , Pesticides , Australia , Carbon , Cellulose 1,4-beta-Cellobiosidase , Pesticides/toxicity , Soil/chemistry , Soil Microbiology
6.
Physiol Plant ; 174(4): e13761, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36004733

ABSTRACT

Foliar fertilization delivers essential nutrients directly to plant tissues, reducing excessive soil fertilizer applications that can lead to eutrophication following nutrient leaching. Foliar nutrient absorption is a dynamic process affected by leaf surface structure and composition, plant nutrient status, and ion physicochemical properties. We applied multiple methods to study the foliar absorption behaviors of manganese (Mn) and phosphorus (P) in nutrient-deficient spring barley (Hordeum vulgare) at two growth stages. Nutrient-specific chlorophyll a fluorescence assays were used to visualize leaf nutrient status, while laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to visualize foliar absorption pathways for P and Mn ions. Rapid Mn absorption was facilitated by a relatively thin cuticle with a low abundance of waxes and a higher stomatal density in Mn-deficient plants. Following absorption, Mn accumulated in epidermal cells and in the photosynthetically active mesophyll, enabling a fast (6 h) restoration of Mn-dependent photosynthetic processes. Conversely, P-deficient plants developed thicker cuticles and epidermal cell walls, which reduced the penetration of P across the leaf surface. Foliar-applied P accumulated in trichomes and fiber cells above leaf veins without reaching the mesophyll and, as a consequence, no restoration of P-dependent photosynthetic processes was observed. This study reveals new links between leaf surface morphology, foliar-applied ion absorption pathways, and the restoration of affected physiological processes in nutrient-deficient leaves. Understanding that ions may have different absorption pathways across the leaf surface is critical for the future development of efficient fertilization strategies for crops in nutrient-limited soils.


Subject(s)
Hordeum , Manganese , Phosphorus , Plant Leaves , Chlorophyll A/analysis , Hordeum/metabolism , Ions/metabolism , Manganese/metabolism , Nutrients/analysis , Phosphorus/metabolism , Plant Leaves/metabolism , Soil
7.
Environ Sci Technol ; 56(9): 5580-5589, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35438975

ABSTRACT

The environmental mobility of Cu and therefore its potential toxicity are closely linked to its attachment to natural organic matter (NOM). Geochemical models assume full lability of metals bound to NOM, especially under strong oxidizing conditions, which often leads to an overestimation of the lability of soil metals. Stable isotope dilution (SID) has been successfully applied to estimate the labile (isotopically exchangeable) pool of soil metals. However, its application to study the lability of NOM-Cu required development of a robust separation and detection approach so that free Cu ions can be discriminated from (the also soluble) NOM-Cu. We developed a SID protocol (with enriched 65Cu) to quantify the labile pool of NOM-Cu using size exclusion chromatography coupled to a UV detector (for the identification of different NOM molecular weights) and ICP-MS (for 65Cu/63Cu ratio measurement). The Cu isotopic-exchange technique was first characterized and verified using standard NOM (SR-NOM) before applying the developed technique to an "organic-rich" podzol soil extract. The developed protocol indicated that, in contrast to the common knowledge, significant proportions of SR-NOM-Cu (25%) and soil organic-Cu (55%) were not labile, i.e., permanently locked into inaccessible organic structures. These findings need to be considered in defining Cu interactions with the reactive pool of NOM using geochemical models and risk evaluation protocols in which complexed Cu has always been implicitly assumed to be fully labile and exchangeable with free Cu ions.


Subject(s)
Soil Pollutants , Humans , Copper/chemistry , Isotopes , Metals/analysis , Soil/chemistry , Soil Pollutants/analysis
8.
Front Plant Sci ; 13: 757048, 2022.
Article in English | MEDLINE | ID: mdl-35310668

ABSTRACT

Foliar zinc (Zn) fertilization is an important approach for overcoming crop Zn deficiency, yet little is known regarding the subsequent translocation of this foliar-applied Zn. Using synchrotron-based X-ray fluorescence microscopy (XFM) and transcriptome analysis, the present study examined the translocation of foliar absorbed Zn in sunflower (Helianthus annuus) leaves. Although bulk analyses showed that there had been minimal translocation of the absorbed Zn out of the leaf within 7 days, in situ analyses showed that the distribution of Zn in the leaf had changed with time. Specifically, when Zn was applied to the leaf for 0.5 h and then removed, Zn primarily accumulated within the upper and lower epidermal layers (when examined after 3 h), but when examined after 24 h, the Zn had moved to the vascular tissues. Transcriptome analyses identified a range of genes involved in stress response, cell wall reinforcement, and binding that were initially upregulated following foliar Zn application, whereas they were downregulated after 24 h. These observations suggest that foliar Zn application caused rapid stress to the leaf, with the initial Zn accumulation in the epidermis as a detoxification strategy, but once this stress decreased, Zn was then moved to the vascular tissues. Overall, this study has shown that despite foliar Zn application causing rapid stress to the leaf and that most of the Zn stayed within the leaf over 7 days, the distribution of Zn in the leaf had changed, with Zn mostly located in the vascular tissues 24 h after the Zn had been applied. Not only do the data presented herein provide new insight for improving the efficiency of foliar Zn fertilizers, but our approach of combining XFM with a transcriptome methodological system provides a novel approach for the study of element translocation in plants.

9.
Anal Chem ; 94(11): 4584-4593, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35276040

ABSTRACT

Synchrotron-based X-ray fluorescence microscopy (XFM) analysis is a powerful technique that can be used to visualize elemental distributions across a broad range of sample types. Compared to conventional mapping techniques such as laser ablation inductively coupled plasma mass spectrometry or benchtop XFM, synchrotron-based XFM provides faster and more sensitive analyses. However, access to synchrotron XFM beamlines is highly competitive, and as a result, these beamlines are often oversubscribed. Therefore, XFM experiments that require many large samples to be scanned can penalize beamline throughput. Our study was largely driven by the need to scan large gels (170 cm2) using XFM without decreasing beamline throughput. We describe a novel approach for acquiring two sets of XFM data using two fluorescence detectors in tandem; essentially performing two separate experiments simultaneously. We measured the effects of tandem scanning on beam quality by analyzing a range of contrasting samples downstream while simultaneously scanning different gel materials upstream. The upstream gels were thin (<200 µm) diffusive gradients in thin-film (DGT) binding gels. DGTs are passive samplers that are deployed in water, soil, and sediment to measure the concentration and distribution of potentially bioavailable nutrients and contaminants. When deployed on soil, DGTs are typically small (2.5 cm2), so we developed large DGTs (170 cm2), which can be used to provide extensive maps to visualize the diffusion of fertilizers in soil. Of the DGT gel materials tested (bis-acrylamide, polyacrylamide, and polyurethane), polyurethane gels were most suitable for XFM analysis, having favorable handling, drying, and analytical properties. This gel type enabled quantitative (>99%) transmittance with minimal (<3%) flux variation during raster scanning, whereas the other gels had a substantial effect on the beam focus. For the first time, we have (1) used XFM for mapping analytes in large DGTs and (2) developed a tandem probe analysis mode for synchrotron-based XFM, effectively doubling throughput. The novel tandem probe analysis mode described here is of broad applicability across many XFM beamlines as it could be used for future experiments where any uniform, highly transmissive sample could be analyzed upstream in the "background" of downstream samples.


Subject(s)
Polyurethanes , Synchrotrons , Diffusion , Gels , Soil/chemistry
10.
Sci Total Environ ; 807(Pt 1): 150734, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34606862

ABSTRACT

The extensive application of pesticides in agriculture raises concerns about their potential negative impact on soil microorganisms, being the key drivers of nutrient cycling. Most studies have investigated the effect of a single pesticide on a nutrient cycling in single soil type. We, for the first time, investigated the effect of 20 commercial pesticides with different mode of actions, applied at their recommended dose and five times their recommended dose, on nitrogen (N) microbial cycling in three different agricultural soils from southern Australian. Functional effects were determined by measuring soil enzymatic activities of ß-1,4-N-acetyliglucosaminidase (NAG) and l-leucine aminopeptidase (LAP), potential nitrification (PN), and the abundance of functional genes involved in N cycling (amoA and nifH). Effects on nitrifiers diversity were determined with amplicon sequencing. Overall, the pesticides effect on N microbial cycling was dose-independent and soil specific. The fungicides flutriafol and azoxystrobin, the herbicide chlorsulfuron and the insecticide fipronil induced a significant reduction in PN and ß-1,4-N-acetylglucosaminidase activity (P < 0.05) (NAG) in the alkaline loam soil with low organic carbon content i.e. a soil with properties which typically favors pesticide bioavailability and therefore potential toxicity. For the nitrifier community, the greatest pesticide effects were on the most dominant Nitrososphaeraceae (ammonia-oxidizing archaea; AOA) whose abundance increased significantly compared to the less dominant AOA and other nitrifiers. The inhibiting effects were more evident in the soil samples treated with fungicides. By testing multiple pesticides in a single study, our findings provide crucial information that can be used for pesticide hazard assessment.


Subject(s)
Pesticides , Soil Microbiology , Ammonia , Archaea , Australia , Nitrification , Nitrogen , Nitrogen Cycle , Oxidation-Reduction , Pesticides/toxicity , Soil
11.
Environ Sci Technol ; 55(17): 11848-11858, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34382781

ABSTRACT

Synchrotron-based X-ray fluorescence microscopy (XFM) coupled with X-ray absorption near-edge structure (XANES) imaging was used to study selenium (Se) biodistribution and speciation in Limnodynastes peronii tadpoles. Tadpoles were exposed to dissolved Se (30 µg/L) as selenite (SeIV) or selenate (SeVI) for 7 days followed by 3 days of depuration. High-resolution elemental maps revealed that Se partitioned primarily in the eyes (specifically the eye lens, iris, and retinal pigmented epithelium), digestive and excretory organs of SeIV-exposed tadpoles. Speciation analysis confirmed that the majority of accumulated Se was converted to organo-Se. Multielement analyses provided new information on Se colocalization and its impact on trace element homeostasis. New insights into the fate of Se on a whole organism scale contribute to our understanding of the mechanisms and risks associated with Se pollution.


Subject(s)
Selenium Compounds , Selenium , Animals , Larva , Selenic Acid , Synchrotrons , Tissue Distribution , Wetlands
12.
J Exp Bot ; 72(13): 5079-5092, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33944939

ABSTRACT

Trichomes are potentially important for absorption of foliar fertilizers. A study has shown that the non-glandular trichromes (NGTs) of sunflower (Helianthus annuus) accumulated high concentrations of foliar-applied zinc (Zn); however, the mechanisms of Zn accumulation in the NGTs and the fate of this Zn are unclear. Here we investigated how foliar-applied Zn accumulates in the NGTs and the subsequent translocation of this Zn. Time-resolved synchrotron-based X-ray fluorescence microscopy and transcriptional analyses were used to probe the movement of Zn in the NGTs, with the cuticle composition of the NGTs examined using confocal Raman microscopy. The accumulation of Zn in the NGTs is both an initial preferential absorption process and a subsequent translocation process. This preferred absorption is likely because the NGT base has a higher hydrophilicity, whilst the subsequent translocation is due to the presence of plasmodesmata, Zn-chelating ligands, and Zn transporters in the NGTs. Furthermore, the Zn sequestered in the NGTs was eventually translocated out of the trichome once the leaf Zn concentration had decreased, suggesting that the NGTs are also important in maintaining leaf Zn homeostasis. This study demonstrates for the first time that trichomes have a key structural and functional role in the absorption and translocation of foliar-applied Zn.


Subject(s)
Helianthus , Trichomes , Fertilizers , Plant Leaves , Zinc
13.
Environ Sci Technol ; 55(20): 13523-13531, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34037394

ABSTRACT

Using zinc (Zn) foliar fertilizers to enhance the grain quality of wheat (Triticum aestivum) can be an effective alternative or supplement to Zn soil fertilizers. However, knowledge about the mechanisms of Zn absorption and translocation following foliar application is scarce. Here, autoradiography and γ-spectrometry were used to investigate the behavior of 65Zn applied to wheat leaves as soluble 65Zn chloride (65ZnCl2), chelated 65Zn (65ZnEDTA), 65Zn oxide nanoparticle (65ZnO-NP) suspensions, and 65ZnO microparticle (65ZnO-MP) suspensions. The largest amount of 65Zn absorption occurred in 65ZnCl2 treated leaves. However, this treatment (65ZnCl2) also had the lowest proportion of absorbed 65Zn translocated away from the treated leaf after 15 d due to leaf scorching (p = 0.0007). Foliar-applied 65ZnO-NPs and 65ZnO-MPs had the lowest absorption, but 65ZnO-NPs had the highest relative translocation. 65Zinc EDTA was intermediate, with higher 65Zn absorption than 65ZnO treatments but similar translocation. Regardless, the majority of the foliar-applied 65Zn remained in the treated leaf for all treatments. Furthermore, 65ZnO-NPs and 65ZnO-MPs accumulated in plant nodes, suggesting that Zn was absorbed as dissolved 65Zn and particulate 65ZnO. Overall, the form and amount of absorbed 65Zn affected translocation.


Subject(s)
Nanoparticles , Zinc Oxide , Edible Grain/chemistry , Fertilizers/analysis , Plant Leaves/chemistry , Soil , Triticum , Zinc/analysis
14.
Nat Nanotechnol ; 16(8): 926-932, 2021 08.
Article in English | MEDLINE | ID: mdl-33986512

ABSTRACT

Our knowledge of uptake, toxicity and detoxification mechanisms as related to nanoparticles' (NPs') characteristics remains incomplete. Here we combine the analytical power of three advanced techniques to study the cellular binding and uptake and the intracellular transformation of silver nanoparticles (AgNPs): single-particle inductively coupled mass spectrometry, mass cytometry and synchrotron X-ray absorption spectrometry. Our results show that although intracellular and extracellularly bound AgNPs undergo major transformation depending on their primary size and surface coating, intracellular Ag in 24 h AgNP-exposed human lymphocytes exists in nanoparticulate form. Biotransformation of AgNPs is dominated by sulfidation, which can be viewed as one of the cellular detoxification pathways for Ag. These results also show that the toxicity of AgNPs is primarily driven by internalized Ag. In fact, when toxicity thresholds are expressed as the intracellular mass of Ag per cell, differences in toxicity between NPs of different coatings and sizes are minimized. The analytical approach developed here has broad applicability in different systems where the aim is to understand and quantify cell-NP interactions and biotransformation.


Subject(s)
Metal Nanoparticles , Silver , T-Lymphocytes/metabolism , Biotransformation , Humans , Jurkat Cells , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Silver/chemistry , Silver/pharmacokinetics , Silver/pharmacology
15.
Sci Total Environ ; 770: 145354, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33736407

ABSTRACT

The effect of long-term ageing (up to 700 days) on the mobility, potential bioavailability and bioaccessibility of antimony (Sb) was investigated in two soils (S1: pH 8.2; S2: pH 4.9) spiked with two Sb concentrations (100 and 1000 mg·kg-1). The Sb mobility decreased with ageing as highlighted by sequential extraction, while its residual fraction significantly increased. The concentration of Sb (CDGT), as determined by diffusive gradients in thin films (DGT), showed a reduction in potential contaminant bioavailability during ageing. The DGT analysis also showed that Sb-CDGT after 700 days ageing was significantly higher in S1-1000 compared to S2-1000, suggesting soil pH plays a key role in Sb potential bioavailability. In-vitro tests also revealed that Sb bioaccessibility (and Hazard Quotient) decreased over time. Linear combination fitting of Sb K-edge XANES derivative spectra showed, as a general trend, an increase in Sb(V) sorption to inorganic oxides with ageing as well as Sb(V) bound to organic matter (e.g. up to 27 and 37% respectively for S2-100). The results indicated that ageing can alleviate Sb ecotoxicity in soil and that the effectiveness of such processes can be increased at acidic pH. However, substantial risks due to Sb mobility, potential bioavailability and bioaccessibility remained in contaminated soils even after 700 days ageing.


Subject(s)
Antimony , Soil Pollutants , Antimony/analysis , Biological Availability , Environmental Pollution/analysis , Soil , Soil Pollutants/analysis
16.
Nanoscale Adv ; 3(3): 682-691, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-36133829

ABSTRACT

Nanomaterials are widely used in industrial and clinical settings due to their unique physical and chemical properties. However, public health and environmental concerns have emerged owing to their undesired toxicity and ability to trigger immune responses. This paper presents the development of a microfluidic-based cell biochip device that enables the administration of nanoparticles under laminar flow to cells of the immune system to assess their cytotoxicity. The exposure of human B lymphocytes to 10 nm silver nanoparticles under fluid flow led to a 3-fold increase in toxicity compared to static conditions, possibly indicating enhanced cell-nanoparticle interactions. To investigate whether the administration under flow was the main contributing factor, we compared and validated the cytotoxicity of the same nanoparticles in different platforms, including the conventional well plate format and in-house fabricated microfluidic devices under both static and dynamic flow conditions. Our results suggest that commonly employed static platforms might not be well-suited to perform toxicological screening of nanomaterials and may lead to an underestimation of cytotoxic responses. The simplicity of the developed flow system makes this setup a valuable tool to preliminary screen nanomaterials.

17.
Food Microbiol ; 93: 103610, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32912583

ABSTRACT

Pre-harvest sanitization of irrigation water has potential for reducing pathogen contamination of fresh produce. We compared the sanitizing effects of irrigation water containing neutral electrolyzed oxidizing water (EOW) or sodium hypochlorite (NaClO) on pre-harvest lettuce and baby spinach leaves artificially contaminated with a mixture of Escherichia coli, Salmonella Enteritidis and Listeria innocua (~1 × 108 colony-forming units/mL each resuspended in water containing 100 mg/L dissolved organic carbon, simulating a splash-back scenario from contaminated soil/manure). The microbial load and leaf quality were assessed over 7 days, and post-harvest shelf life evaluated for 10 days. Irrigation with water containing EOW or NaClO at 50 mg/L free chlorine significantly reduced the inoculated bacterial load by ≥ 1.5 log10, whereas tap water irrigation reduced the inoculated bacterial load by an average of 0.5 log10, when compared with untreated leaves. There were no visual effects of EOW or tap water irrigation on baby spinach or lettuce leaf surfaces pre- or post-harvest, whereas there were obvious negative effects of NaClO irrigation on leaf appearance for both plants, including severe necrotic zones and yellowing/browning of leaves. Therefore, EOW could serve as a viable alternative to chemical-based sanitizers for pre-harvest disinfection of minimally processed vegetables.


Subject(s)
Decontamination , Electrolysis , Food Microbiology , Plant Leaves/microbiology , Water/chemistry , Chlorine , Disinfection , Foodborne Diseases/microbiology , Lactuca/microbiology , Listeria , Plants/microbiology , RNA, Ribosomal, 16S , Radioisotopes , Sodium Hypochlorite/chemistry , Spinacia oleracea/microbiology
18.
Environ Pollut ; 269: 116132, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33272794

ABSTRACT

Molybdenum (Mo) contamination of agricultural soils around Mo-mining areas is of emerging environmental concern. This study evaluated potential practical techniques for chemical immobilization of three Mo contaminated agricultural soils via application of up to six amendments from four different types of materials including biosolids, biochar supported nanoscale zero-valent iron (BC-nZVI), drinking water treatment residues (WTR) and ferrous minerals (magnetite and ferrihydrite). The efficacy of the different amendments on soil Mo bioaccessibility and bioavailability was evaluated by monitoring Mo uptake in both monocotyledon (ryegrass) and dicotyledon (alfalfa) plants, soil extractable Mo, and Mo bioavailability as measured by Diffusive Gradient in Thin Films (DGT®). All amendments exhibited no immobilization effect and increased Mo extractability in the severely contaminated soil (264 mg Mo kg-1). In contrast, in lightly and moderately contaminated soils (22 and 98 mg Mo kg-1), biosolids, WTR and magnetite all reduced soil extractable Mo and decreased Mo uptake in both alfalfa and ryegrass shoots relative to controls (CK). Moreover, DGT showed that during incubation experiments while biosolids amendments increased Mo bioavailability from 115 to 378% compared to the CK treatments, all other amendments decreased Mo bioavailability insignificantly.


Subject(s)
Soil Pollutants , Soil , Agriculture , Biological Availability , Molybdenum , Soil Pollutants/analysis
19.
Environ Int ; 146: 106245, 2021 01.
Article in English | MEDLINE | ID: mdl-33161202

ABSTRACT

We use soils to provide 98.8% of our food, but we must ensure that the pressure we place on soils to provide this food in the short-term does not inadvertently push the Earth into a less hospitable state in the long-term. Using the planetary boundaries framework, we show that soils are a master variable for regulating critical Earth-system processes. Indeed, of the seven Earth-systems that have been quantified, soils play a critical and substantial role in changing the Earth-systems in at least two, either directly or indirectly, as well as smaller contributions for a further three. For the biogeochemical flows Earth-system process, soils contribute 66% of the total anthropogenic change for nitrogen and 38% for phosphorus, whilst for the land-system change Earth-system process, soils indirectly contribute 80% of global anthropogenic change. Furthermore, perturbations of soils contribute directly to 21% of climate change, 25% to ocean acidification, and 25% to stratospheric ozone depletion. We argue that urgent interventions are required to greatly improve soil management, especially for those Earth-system processes where the planetary boundary has already been exceeded and where soils make an important contribution, with this being for biogeochemical flows (both nitrogen and phosphorus), for climate change, and for land-system change. Of particular importance, it is noted that the highly inefficient use of N fertilizers results in release of excess N into the broader environment, contributes to climate change, and results in release of ozone-depleting substances. Furthermore, the use of soils for agricultural production results not only in land-system change, but also in the loss (mineralization) of organic matter with a concomitant release of CO2 contributing to both climate change and ocean acidification. Thus, there is a need to markedly improve the efficiency of fertilizer applications and to intensify usage of our most fertile soils in order to allow the restoration of degraded soils and limit further areal expansion of agriculture. Understanding, and acting upon, the role of soils is critical in ensuring that planetary boundaries are not transgressed, with no other single variable playing such a strategic role across all of the planetary boundaries.


Subject(s)
Seawater , Soil , Agriculture , Fertilizers , Hydrogen-Ion Concentration
20.
Chemosphere ; 269: 128704, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33220985

ABSTRACT

A new colorimetric technique for the measurement of labile phosphate in soils using the diffusive gradients in thin films (DGT) technique was developed in this study. This technique can determine the mass of phosphate accumulated on the precipitated Zr-oxide based binding gel by forming the blue colour following the standard molybdate-ascorbic acid method. The optimal reaction temperature and coloration time were 20 °C (room temperature) and 26 min. After determining a well-fitted calibration equation, the technique was able to measure phosphate concentration up to 2.5 mg/L for 24 h deployment with a detection limit of 10.1 µg/L. Two-dimensional quantitative visualisation of phosphate diffusion in three phosphorus (P) fertilised soils were obtained using the colorimetric technique. The results from the colorimetric DGT technique were compared to the elution DGT technique and Colwell P extraction. The DGT techniques (colorimetric and elution) and Colwell P measurements demonstrated similar patterns of phosphate diffusion in soil. Both DGT techniques showed similar phosphate concentration along the concentric rings around the fertiliser application. A new, convenient, and fast DGT colorimetric technique was developed, and successfully used to measure the distribution of potentially available phosphate in soils. The new technique is less laborious than current techniques as it does not require any pre-treatment of the binding gel layers or heating during scanning, thus providing faster results. Therefore, the technique may be more suitable for in-field applications and can be used to investigate the in situ diffusion of potentially available phosphate from fertilisers, and relate this to the plant uptake of P.


Subject(s)
Phosphates , Soil , Colorimetry , Diffusion , Environmental Monitoring , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...