Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Drug Chem Toxicol ; 45(4): 1493-1499, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33148062

ABSTRACT

Estrogen and progesterone congeners as found in various oral contraceptive formulations have been implicated as the cause of cancer in sex and tissue-specific targets. The mechanism of carcinogenesis by sex steroids is still debatable. In this study, we evaluated the genotoxicity induced by two components of one of the commonly used oral contraceptive formulation; drospirenone and ethinylestradiol in human breast cells (MCF-7) in vitro and in bone marrow cells of female mice in vivo. DNA damage was assessed by alkaline comet assay. Both of the drugs produced DNA damage in human breast cells at exposure concentrations which are about 100-fold and above than normally found in human blood after their lowest recommended doses. The DNA damage was produced only after metabolic activation by mice liver S-9 fraction in both cases. The co-exposure with both the compounds at median exposure levels resulted in potentiation of DNA damage. In bone marrow cells of adult female mice, both the compounds produced DNA damage at human equivalent doses after exposure was carried out repeatedly for approximately one estrus cycle (5 days). The co-administration with the compounds resulted in potentiation of DNA damage as indicated by percent tail DNA in comet assay. Thus it is concluded that drospirenone and ethinylestradiol cause DNA damage in certain target specific tissue (mammary epithelial cells) and in female bone marrow cells. The co-exposure with drospirenone and ethinylestradiol results in potentiation of genotoxicity which may pose a threat of cancer development in women taking these drugs for long periods.


Subject(s)
DNA Damage , Ethinyl Estradiol , Androstenes , Animals , Bone Marrow Cells , Comet Assay , Contraceptives, Oral , Ethinyl Estradiol/toxicity , Female , Humans , Mice
2.
Naunyn Schmiedebergs Arch Pharmacol ; 385(11): 1127-39, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22885820

ABSTRACT

Nitric oxide synthesized from inducible nitric oxide synthase (iNOS) plays role in acetaminophen (APAP)-induced liver damage. The present study was undertaken to evaluate the effect of iNOS inhibitor S-methylisothiourea (SMT) in APAP-induced hepatotoxicity in rats (1 g/kg, i.p.). SMT was (10, 30, and 100 mg/kg; i.p.) given 30 min before and 3 h after APAP administration. At 6 and 24 h, blood was collected to measure alanine transaminase (ALT), aspartate transaminase (AST), and nitrate plus nitrite (NOx) levels in serum. At 48 h, animals were sacrificed, and blood and liver tissues were collected for biochemical estimation. SMT reduced significantly the serum ALT, AST, and NOx levels at 24 and 48 h and liver NOx levels at 48 h as compared with APAP-treated control. The amount of peroxynitrite measured by rhodamine assay was significantly reduced by SMT, as compared with APAP-treated control group. SMT treatment (30 mg/kg) has significantly reduced the lipid peroxidation and protein carbonyl levels, increased SOD and catalase, and reduced glutathione and total thiol levels significantly as compared with APAP-treated control. SMT 30 mg/kg dose has protected animals from APAP-induced hypotension and reduced iNOS gene expression. Hepatocytes were isolated from animals, and effect of SMT on apoptosis, MTP, and ROS generation was studied, and their increased value in APAP intoxicated group was found to be significantly decreased by SMT (30 mg/kg) at 24 and 48 h. In conclusion, nitric oxide produced from iNOS plays important role in toxicity at late hours (24 to 48 h), and SMT inhibits iNOS and reduces oxidative and nitrosative stress.


Subject(s)
Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Enzyme Inhibitors/pharmacology , Isothiuronium/analogs & derivatives , Animals , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Gene Expression Regulation/drug effects , Isothiuronium/administration & dosage , Isothiuronium/pharmacology , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/genetics , Oxidative Stress/drug effects , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...