Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(43): e202306572, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37682083

ABSTRACT

Styrene-maleic acid copolymers (SMAs), and related amphiphilic copolymers, are promising tools for isolating and studying integral membrane proteins in a native-like state. However, they do not exhibit this ability universally, as several reports have found that SMAs and related amphiphilic copolymers show little to no efficiency when extracting specific membrane proteins. Recently, it was discovered that esterified SMAs could enhance the selective extraction of trimeric Photosystem I from the thylakoid membranes of thermophilic cyanobacteria; however, these polymers are susceptible to saponification that can result from harsh preparation or storage conditions. To address this concern, we herein describe the development of α-olefin-maleic acid copolymers (αMAs) that can extract trimeric PSI from cyanobacterial membranes with the highest extraction efficiencies observed when using any amphiphilic copolymers, including diisobutylene-co-maleic acid (DIBMA) and functionalized SMA samples. Furthermore, we will show that αMAs facilitate the formation of photosystem I-containing nanodiscs that retain an annulus of native lipids and a native-like activity. We also highlight how αMAs provide an agile, tailorable synthetic platform that enables fine-tuning hydrophobicity, controllable molar mass, and consistent monomer incorporation while overcoming shortcomings of prior amphiphilic copolymers.


Subject(s)
Photosystem I Protein Complex , Styrene , Lipid Bilayers , Polystyrenes , Alkenes , Membrane Proteins
2.
Biomacromolecules ; 24(5): 2164-2172, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36977326

ABSTRACT

Ionic liquids (ILs) have been widely investigated for the pretreatment and deconstruction of lignocellulosic feedstocks. However, the modes of interaction between IL-anions and cations, and plant cell wall polymers, namely, cellulose, hemicellulose, and lignin, as well as the resulting ultrastructural changes are still unclear. In this study, we investigated the atomic level and suprastructural interactions of microcrystalline cellulose, birchwood xylan, and organosolv lignin with 1,3-dialkylimidazolium ILs having varying sizes of carboxylate anions. Analysis by 13C NMR spectroscopy indicated that cellulose and lignin exhibited stronger hydrogen bonding with acetate ions than with formate ions, as evidenced by greater chemical shift changes. Small-angle X-ray scattering analysis showed that while both cellulose and xylan adopted a single-stranded conformation in acetate-ILs, twice as many acetate ions were bound to one anhydroglucose unit than to an anhydroxylose unit. We also determined that a minimum of seven representative carbohydrate units must interact with an anion for that IL to effectively dissolve cellulose or xylan. Lignin is associated as groups of four polymer molecules in formate-ILs and dispersed as single molecules in acetate-ILs, which indicates that it is highly soluble in the latter. In summary, our study demonstrated that 1,3-dialkylimidazolium acetates displayed stronger binding interactions with cellulose and lignin, as compared to formates, and thus have superior potential to fractionate these polymers from lignocellulosic feedstocks.


Subject(s)
Ionic Liquids , Lignin , Lignin/chemistry , Ionic Liquids/chemistry , Polymers , Xylans , Cellulose/chemistry , Cell Wall , Anions/chemistry
3.
J Am Chem Soc ; 144(46): 21206-21212, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36346682

ABSTRACT

Polyolefins constitute the majority of plastics produced worldwide. Despite the variety of precatalyst activation mechanisms known in the literature, the development of spatially controlled olefin polymerizations remains relatively unknown. If successful, control over the olefin polymerization process could provide unprecedented synthetic control and potentially broaden industrial applications. Herein, we demonstrate a simple olefin polymerization methodology termed photoinduced initiation of olefin polymerization (PIOP), wherein photoacid generators are used in conjunction with controlled irradiation to achieve precatalyst activation and olefin polymerization. These results demonstrate that PIOP can be used for solution-based polymerizations of ethylene and α-olefins and may be extended to heterogeneous polymerizations of gaseous ethylene and propylene, thereby achieving spatial control over the olefin polymerization process.


Subject(s)
Alkenes , Ethylenes , Polymerization , Catalysis
4.
Biomacromolecules ; 23(11): 4749-4755, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36219772

ABSTRACT

The detergent-free extraction of integral membrane proteins using styrene-maleic acid copolymers (SMAs) has shown promise as a potentially effective technique to isolate proteins in a more native-like conformation. As the field continues to develop, the protein selectivity and extraction efficiency of many analogues of traditional SMAs are being investigated. Recently, we discovered that the monoesterification of SMAs with alkoxy ethoxylate sidechains drastically affects the bioactivity of these copolymers in the extraction of photosystem I from the cyanobacterium Thermosynechococcus elongatus. However, subsequent investigations also revealed that the conditions under which these esterified SMA polymer analogues are prepared, purified, and stored can alter the structure of the alkoxy ethoxylate-functionalized SMA and perturb the protein extraction process. Herein, we demonstrate that the basic conditions required to solubilize SMA analogues may lead to deleterious saponification side reactions, cleaving the sidechains of an esterified SMA and dramatically decreasing its efficacy for protein extraction. We found that this process is highly dependent on temperature, with polymer samples being prepared and stored at lower temperatures exhibiting significantly fewer saponification side reactions. Furthermore, the effects of small-molecule impurities and exposure to light were also investigated, both of which are shown to have significant effects on the polymer structure and/or protein extraction process.


Subject(s)
Maleates , Membrane Proteins , Membrane Proteins/chemistry , Maleates/chemistry , Polystyrenes/chemistry , Polymers/chemistry
5.
Biomacromolecules ; 22(6): 2544-2553, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34038122

ABSTRACT

Amphiphilic styrene-maleic acid copolymers (SMAs) have been shown to effectively extract membrane proteins surrounded by an annulus of native membrane lipids via the formation of nanodiscs. Recent reports have shown that 2-butoxyethanol-functionalized SMA derivatives promote the extraction of membrane proteins from thylakoid membranes, whereas unfunctionalized SMA is essentially ineffective. However, it is unknown how the extent of functionalization and identity of sidechains impact protein solubilization and specificity. Herein, we show that the monoesterification of an SMA polymer with hydrophobic alkoxy ethoxylate sidechains leads to an increased solubilization efficiency (SE) of trimeric photosystem I (PSI) from the membranes of cyanobacterium Thermosynechococcus elongatus. The specific SMA polymer used in this study, PRO 10235, cannot encapsulate single PSI trimers from this cyanobacterium; however, as it is functionalized with alkoxy ethoxylates of increasing alkoxy chain length, a clear increase in the trimeric PSI SE is observed. Furthermore, an exponential increase in the SE is observed when >50% of the maleic acid repeat units are monoesterified with long alkoxy ethoxylates, suggesting that the PSI extraction mechanism is highly dependent on both the number and length of the attached side chains.


Subject(s)
Maleates , Thylakoids , Hydrophobic and Hydrophilic Interactions , Polymers
6.
Chemistry ; 27(31): 8195-8202, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33793976

ABSTRACT

Without solvents present, the often far-from-equilibrium environment in a mechanochemically driven synthesis can generate high-energy, non-stoichiometric products not observed from the same ratio of reagents used in solution. Ball milling 2 equiv. K[A'] (A'=[1,3-(SiMe3 )2 C3 H3 ]- ) with CaI2 yields a non-stoichiometric calciate, K[CaA'3 ], which initially forms a structure (1) likely containing a mixture of pi- and sigma-bound allyl ligands. Dissolved in arenes, the compound rearranges over the course of several days to a structure (2) with only η3 -bound allyl ligands, and that can be crystallized as a coordination polymer. If dissolved in alkanes, however, the rearrangement of 1 to 2 occurs within minutes. The structures of 1 and 2 have been modeled with DFT calculations, and 2 initiates the anionic polymerization of methyl methacrylate and isoprene; for the latter, under the mildest conditions yet reported for a heavy Group 2 species (one-atm pressure and room temperature).

7.
Angew Chem Int Ed Engl ; 59(24): 9542-9548, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32048390

ABSTRACT

Milling two equivalents of K[1,3-(SiMe3 )2 C3 H3 ] (=K[A']) with MgX2 (X=Cl, Br) produces the allyl complex [K2 MgA'4 ] (1). Crystals grown from toluene are of the solvated species [((η6 -tol)K)2 MgA'4 ] ([1⋅2(tol)]), a trimetallic monomer with both bridging and terminal (η1 ) allyl ligands. When recrystallized from hexanes, the unsolvated 1 forms a 2D coordination polymer, in which the Mg is surrounded by three allyl ligands. The C-C bond lengths differ by only 0.028 Å, indicating virtually complete electron delocalization. This is an unprecedented coordination mode for an allyl ligand bound to Mg. DFT calculations indicate that in isolation, an η3 -allyl configuration on Mg is energetically preferred over the η1 - (σ-bonded) arrangement, but the Mg must be in a low coordination environment for it to be experimentally realized. Methyl methacrylate is effectively polymerized by 1, with activities that are comparable to K[A'] and greater than the homometallic magnesium complex [{MgA'2 }2 ].

8.
Angew Chem Int Ed Engl ; 58(17): 5639-5642, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30753753

ABSTRACT

Herein we report the discovery of the intrinsic mechanochemical reactivity of vinyl-addition polynorbornene (VA-PNB), which has strained bicyclic ring repeat units along the polymer backbone. VA-PNBs with three different side chains were found to undergo ring-opening olefination upon sonication in dilute solutions. The sonicated polymers exhibited spectroscopic signatures consistent with conversion of the bicyclic norbornane repeat units into the ring-open isomer typical of polynorbornene made by ring-opening metathesis polymerization (ROMP-PNB). Thermal analysis and evaluation of chain-scission kinetics suggest that sonication of VA-PNB results in chain segments containing a statistical mixture of vinyl-added and ROMP-type repeat units.

9.
Biotechnol Biofuels ; 11: 265, 2018.
Article in English | MEDLINE | ID: mdl-30275905

ABSTRACT

BACKGROUND: Lignocellulosic biomass requires either pretreatment and/or fractionation to recover its individual components for further use as intermediate building blocks for producing fuels, chemicals, and products. Numerous ionic liquids (ILs) have been investigated for biomass pretreatment or fractionation due to their ability to activate lignocellulosic biomass, thereby reducing biomass recalcitrance with minimal impact on its structural components. In this work, we studied and compared 1-allyl-3-methylimidazolium formate ([AMIM][HCOO]) to the commonly used 1-ethyl-3-methylimidazolium acetate ([EMIM][CH3COO]) for its potential to activate hybrid poplar biomass and enable high cellulose and hemicellulose enzymatic conversion. Although [EMIM][CH3COO] has been widely used for activation, [AMIM][HCOO] was recently identified to achieve higher biomass solubility, with an increase of 40% over [EMIM][CH3COO]. RESULTS: Since IL activation is essentially an early stage of IL dissolution, we assessed the recalcitrance of [EMIM][CH3COO] and [AMIM][HCOO]-activated biomass through a suite of analytical tools. More specifically, Fourier transform infrared spectroscopy and X-ray diffraction showed that activation using [AMIM][HCOO] does not deacetylate hybrid poplar as readily as [EMIM][CH3COO] and preserves the crystallinity of the cellulose fraction, respectively. This was supported by scanning electron microscopy and enzymatic saccharification experiments in which [EMIM][CH3COO]-activated biomass yielded almost twice the cellulose and hemicellulose conversion as compared to [AMIM][HCOO]-activated biomass. CONCLUSION: We conclude that the IL [AMIM][HCOO] is better suited for biomass dissolution and direct product formation, whereas [EMIM][CH3COO] remains the better IL for biomass activation and fractionation.

10.
Polymers (Basel) ; 10(1)2018 Jan 02.
Article in English | MEDLINE | ID: mdl-30966076

ABSTRACT

Catalysts that employ late transition-metals, namely Ni and Pd, have been extensively studied for olefin polymerizations, co-polymerizations, and for the synthesis of advanced polymeric structures, such as block co-polymers. Unfortunately, many of these catalysts often exhibit poor thermal stability and/or non-living polymerization behavior that limits their ability to access tailored polymer structures. Due to this, the development of catalysts that display controlled/living behavior at elevated temperatures is vital. In this manuscript, we describe a Ni α-diimine complex that is capable of polymerizing ethylene in a living manner at temperatures as high as 75 °C, which is one of the highest temperatures reported for the living polymerization of ethylene by a late transition metal-based catalyst. Furthermore, we will demonstrate that this catalyst's living behavior is not dependent on the presence of monomer, and that it can be exploited to access polyethylene-based block co-polymers.

12.
Chemistry ; 22(35): 12506-17, 2016 Aug 22.
Article in English | MEDLINE | ID: mdl-27459234

ABSTRACT

We describe an efficient five-step, enantioselective synthesis of (R,R)- and (S,S)-lignin dimer models possessing a ß-O-4 linkage, by using the Evans chiral aldol reaction as a key step. Mitsunobu inversion of the (R,R)- or (S,S)-isomers generates the corresponding (R,S)- and (S,R)-diastereomers. We further extend this approach to the enantioselective synthesis of a lignin trimer model. These lignin models are synthesized with excellent ee (>99 %) and high overall yields. The lignin dimer models can be scaled up to provide multigram quantities that are not attainable by using previous methodologies. These lignin models will be useful in degradation studies probing the selectivity of enzymatic, microbial, and chemical processes that deconstruct lignin.


Subject(s)
Lignin/chemistry , Polymers/chemistry , Chemical Phenomena
13.
Angew Chem Int Ed Engl ; 55(25): 7106-10, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27135297

ABSTRACT

A dibenzobarrelene-bridged, α-diimine Ni(II) catalyst (rac-3) was synthesized and shown to have exceptional behavior for the polymerization of ethylene. The catalyst afforded high molecular weight polyethylenes with narrow dispersities and degrees of branching much lower than those made by related α-diimine nickel catalysts. Catalyst rac-3 demonstrated living behavior at room temperature, produced linear polyethylene (Tm =135 °C) at -20 °C, and, most importantly, was able to copolymerize ethylene with the biorenewable polar monomer methyl 10-undecenoate to yield highly linear ester-functionalized polyethylene.

14.
J Am Chem Soc ; 138(3): 774-7, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26722675

ABSTRACT

The ability to control catalytic activity and selectivity via in situ changes in catalyst oxidation-state represents an intriguing tool for enhanced polymerization control. Herein, we report foundational evidence that catalysts bearing redox-active moieties may be used to synthesize high molecular weight polyethylene with tailored microstructure. The ability to modulate branching density and identity is facilitated by ligand-based redox chemistry, and is realized via the addition of chemical reductants into the polymerization reactor. Detailed GPC and NMR analyses demonstrate that branching density may be altered by up to ∼ 30% as a function of in situ added reductant.

15.
ACS Macro Lett ; 5(9): 1029-1033, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-35614640

ABSTRACT

The ability to precisely modulate polymer architecture and composition is a long-standing goal within the field of polymer synthesis. Herein, we demonstrate that redox-active olefin polymerization catalysts may be used to predictably tailor polyolefin comonomer incorporation levels for the copolymerization of ethylene and higher α-olefins. This ability is facilitated via the utilization of a redox-active olefin polymerization catalyst that once reduced via in situ addition of a chemical reductant results in a notable drop in α-olefin incorporation. We attribute this behavior to the reduced catalyst's increased electron density and its concomitant decreased rate of α-olefin consumption. These results are supported by investigations into propylene and 1-hexene homopolymerizations as well as detailed GPC, DSC, GC, and NMR analyses.

16.
ACS Macro Lett ; 5(6): 682-687, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-35614655

ABSTRACT

The ability to incorporate diverse monomeric building blocks enables the development of advanced polymeric materials possessing a wide range of properties that suits them for myriad applications. Herein, that synthetic toolbox is expanded through the first report of purine-based copolymers in which purines are incorporated directly into the polymer main chain. Stille cross-coupling of dibromopurine monomers with benzodithiophene (BDT) comonomers is used to generate these "poly(purine)s", and variations in the substitution pattern of the purine monomer and BDT side-chains provides insight into the role of monomer design on their resultant thermal and photophysical properties. Specifically, thermal analyses show that poly(purine)s exhibit high thermal stability and high glass transition temperatures depending on the BDT side-chain substituents and substitution pattern of the purine-derived comonomer. Furthermore, optical properties measured via UV-vis and fluorescence spectroscopies show dependence on monomer substitution pattern. These findings demonstrate the viability of synthesizing poly(purine)s via metal-catalyzed cross-coupling reactions and highlight the potential to tailor poly(purine) properties via simple alterations of comonomers.

17.
ACS Macro Lett ; 5(7): 879-883, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-35614763

ABSTRACT

The vinyl addition polymerization of norbornyl-based monomers bearing polar functional groups is often problematic, leading to low molecular weight polymers in poor yield. Herein, we provide proof-of-principle evidence that addition-type homopolymers of siloxane substituted norbornyl-based monomers may be readily synthesized using the catalyst trans-[Ni(C6F5)2(SbPh3)2]. Polymerizations using this catalyst reached moderate to high conversion in just 5 min of polymerization and produced siloxane-substituted polymers with molecular weights exceeding 100 kg/mol. These polymers showed excellent thermal stability (Td ≥ 362 °C) and were cast into membranes that displayed high CO2 permeability and enhanced CO2/N2 selectivity as compared to related materials.

18.
J Org Chem ; 80(3): 1771-80, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25584871

ABSTRACT

A series of highly enantioselective transformations, such as the Sharpless asymmetric epoxidation and Jacobsen hydrolytic kinetic resolution, were utilized to achieve the complete stereoselective synthesis of ß-O-4 lignin dimer models containing the S, G, and H subunits with excellent ee (>99%) and moderate to high yields. This unprecedented synthetic method can be exploited for enzymatic, microbial, and chemical investigations into lignin's degradation and depolymerization as related to its stereochemical constitution. Preliminary degradation studies using enantiopure Co(salen) catalysts are also reported.


Subject(s)
Cobalt/chemistry , Epoxy Compounds/chemistry , Ethylenediamines/chemistry , Lignin/chemistry , Lignin/chemical synthesis , Catalysis , Kinetics , Stereoisomerism
19.
J Am Chem Soc ; 135(44): 16316-9, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24164257

ABSTRACT

Sterically demanding Ni(II) α-diimine precatalysts were synthesized utilizing 2,6-bis(diphenylmethyl)-4-methyl aniline. When activated with methylaluminoxane, the catalyst NiBr2(ArN═C(Me)-C(Me)═NAr) (Ar = 2,6 bis(diphenylmethyl)-4-methylbenzene) was highly active, produced well-defined polyethylene at temperatures up to 100 °C (Mw/Mn = 1.09-1.46), and demonstrated remarkable thermal stability at temperatures appropriate for industrially used gas-phase polymerizations (80-100 °C).

20.
J Phys Chem A ; 113(33): 9337-47, 2009 Aug 20.
Article in English | MEDLINE | ID: mdl-19630422

ABSTRACT

VUV absorbance and index of refraction data for a series of linear and cyclic alkanes have been collected in order to understand the relationship between the electronic excitation wavelength (or absorbance edge), index of refraction, and molecular structure. The absorbance edge and index for a homologous series of both linear and cyclic alkanes increase with increasing carbon number. The optical properties of complex cycloalkanes do not vary predictably with increasing carbon number but instead depend on variations in the hydrocarbon structure in addition to hydrocarbon size. An understanding of the fundamental optical properties of this class of compounds is directly applicable to the identification of a high index and low-absorbance fluid for 193 nm immersion lithography.

SELECTION OF CITATIONS
SEARCH DETAIL
...