Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
1.
Plant Biotechnol J ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600703

ABSTRACT

Sterols have long been associated with diverse fields, such as cancer treatment, drug development, and plant growth; however, their underlying mechanisms and functions remain enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box transcription complex in modulating the steroid metabolism pathway within soybeans. Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of SQE weakens this tolerance. Field experiments conducted over two seasons further reveal increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the application of soybean steroids, including fucosterol and soyasaponin II, significantly improves drought tolerance in soybean, wheat, foxtail millet, and maize. These findings underscore the pivotal role of soybean steroids in countering oxidative stress in plants and offer a new research strategy for enhancing crop stress tolerance and quality from gene regulation to chemical intervention.

2.
Free Radic Biol Med ; 212: 162-173, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38092274

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common type of primary hepatic liver cancer. Dysregulated Wnt/ß-catenin activation is closely related to the progression of cancer. Nevertheless, the mechanism that sustains the abnormal expression of ß-catenin in HCC has yet to be identified. In this study, we find that UCHL3 is overexpressed in HCC tissues and correlated with ß-catenin protein level. High expression of UCHL3 is associated with poor prognosis. UCHL3 knockdown markedly reduces the protein level of ß-catenin in HCC cells. TOP-luciferase activity and ß-catenin target genes expression are also decreased upon UCHL3 depletion. We find that the ARM domain of ß-catenin is required for the interaction with UCHL3. UCHL3 increases ß-catenin protein stability via removing K48-specific poly-ubiquitin chains from ß-catenin protein. Furthermore, the depletion of UCHL3 induces ferroptosis and hinders the growth, invasion, and stem cell properties of HCC cells. These impacts could be restored by the overexpression of ß-catenin. In addition, the UCHL3 inhibitor TCID inhibits the aggressive phenotype of HCC through the degradation of ß-catenin. In general, our results indicates that UCHL3 increases the stability of ß-catenin, which in turn facilitates tumorigenesis of HCC, suggesting that targeting UCHL3 may be a promising approach for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , beta Catenin/genetics , beta Catenin/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Ubiquitin Thiolesterase/genetics
3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009216

ABSTRACT

OBJECTIVE@#To investigate the clinical effect of unilateral percutaneous vertebroplasty (PVP) combined with 3D printing technology for the treatment of thoracolumbar osteoporotic compression fracture.@*METHODS@#A total of 77 patients with thoracolumbar osteoporotic compression fractures from October 2020 to April 2022 were included in the study, all of which were vertebral body compression fractures caused by trauma. According to different treatment methods, they were divided into experimental group and control group. Thirty-two patients used 3D printing technology to improve unilateral transpedicle puncture vertebroplasty in the experimental group, there were 5 males and 27 females, aged from 63 to 91 years old with an average of (77.59±8.75) years old. Forty-five patients were treated with traditional bilateral pedicle puncture vertebroplasty, including 7 males and 38 females, aged from 60 to 88 years old with an average of(74.89±7.37) years old. Operation time, intraoperative C-arm X-ray times, anesthetic dosage, bone cement injection amount, bone cement diffusion good and good rate, complications, vertebral height, kyphotic angle (Cobb angle), visual analogue scale(VAS), Oswestry disability index (ODI) and other indicators were recorded before and after surgery, and statistically analyzed.@*RESULTS@#All patients were followed up for 6 to 23 months, with preoperative imaging studies, confirmed for thoracolumbar osteoporosis compression fractures, two groups of patients with postoperative complications, no special two groups of patients' age, gender, body mass index (BMI), time were injured, the injured vertebral distribution had no statistical difference(P>0.05), comparable data. Two groups of patients with bone cement injection, bone cement dispersion rate, preoperative and postoperative vertebral body height, protruding after spine angle(Cobb angle), VAS, ODI had no statistical difference(P>0.05). The operative time, intraoperative fluoroscopy times and anesthetic dosage were statistically different between the two groups(P<0.05). Compared with the traditional bilateral puncture group, the modified unilateral puncture group combined with 3D printing technology had shorter operation time, fewer intraoperative fluoroscopy times and less anesthetic dosage. The height of anterior vertebral edge, kyphosis angle (Cobb angle), VAS score and ODI of the affected vertebrae were statistically different between two groups at each time point after surgery(P<0.05).@*CONCLUSION@#In the treatment of thoracolumbar osteoporotic compression fractures, 3D printing technology is used to improve unilateral puncture PVP, which is convenient and simple, less trauma, short operation time, fewer fluoroscopy times, satisfactory distribution of bone cement, vertebral height recovery and kyphotic Angle correction, and good functional improvement.


Subject(s)
Male , Female , Humans , Middle Aged , Aged , Aged, 80 and over , Fractures, Compression/surgery , Spinal Fractures/surgery , Bone Cements , Treatment Outcome , Vertebroplasty/methods , Kyphosis/surgery , Punctures , Printing, Three-Dimensional , Technology , Osteoporotic Fractures/surgery , Anesthetics , Retrospective Studies , Kyphoplasty/methods
4.
MedComm (2020) ; 4(6): e463, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38124786

ABSTRACT

Oxaliplatin (OXA) resistance is a major clinic challenge in hepatocellular carcinoma (HCC). Ferroptosis is a kind of iron-dependent cell death. Triggering ferroptosis is considered to restore sensitivity to chemotherapy. In the present study, we found that USP20 was overexpressed in OXA-resistant HCC cells. High expression of USP20 in HCC was associated with poor prognosis. USP20 contributes OXA resistance and suppress ferroptosis in HCC. Pharmacological inhibition or knockdown of USP20 triggered ferroptosis and increased the sensitivity of HCC cells to OXA both in vitro and in vivo. Coimmunoprecipitation results revealed that the UCH domain of USP20 interacted with the N terminal of SLC7A11. USP20 stabilized SLC7A11 via removing K48-linked polyubiquitination of SLC7A11 protein at K30 and K37. Most importantly, DNA damage-induced ATR activation was required for Ser132 and Ser368 phosphorylation of USP20. USP20 phosphorylation at Ser132 and Ser368 enhanced its stability and thus conferred OXA and ferroptosis resistance of HCC cells. Our study reveals a previously undiscovered association between OXA and ferroptosis and provides new insight into mechanisms regarding how DNA damage therapies always lead to therapeutic resistance. Therefore, targeting USP20 may mitigate the development of drug resistance and promote ferroptosis of HCC in patients receiving chemotherapy.

5.
J Org Chem ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37976373

ABSTRACT

(±)-Salvicatone A (1), a C27-meroterpenoid featuring a unique 6/6/6/6/6-pentacyclic carbon skeleton with a 7,8,8a,9,10,10a-hexahydropyren-1 (6H)-one motif, was isolated from the roots and rhizomes of Salvia castanea Diels f. tomentosa Stib. Its structure was characterized by comprehensive spectroscopic analyses along with computer-assisted structure elucidation, including ACD/structure elucidator and quantum chemical calculations with 1H/13C NMR and electronic circular dichroism. Biogenetically, compound 1 was constructed from decarboxylation following [4 + 2] Diels-Alder cycloaddition reaction between caffeic acid and miltirone analogue. Bioassays showed that (-)-1 and (+)-1 inhibited nitric oxide production in lipopolysaccharide-induced RAW264.7 macrophage cells with an IC50 value of 6.48 ± 1.25 and 15.76 ± 5.55 µM, respectively. The structure-based virtual screening based on the pharmacophores in ePharmaLib, as well as the molecular docking and molecular dynamics simulations study, implied that (-)-1 and (+)-1 may potentially bind to retinoic acid receptor-related orphan receptor C to exert anti-inflammatory activities.

6.
Adv Sci (Weinh) ; 10(33): e2302953, 2023 11.
Article in English | MEDLINE | ID: mdl-37867237

ABSTRACT

Hepatocellular carcinoma (HCC) is a lethal and aggressive human malignancy. The present study examins the anti-tumor effects of deubiquitylating enzymes (DUB) inhibitors in HCC. It is found that the inhibitor of ubiquitin specific peptidase 8 (USP8) and DUB-IN-3 shows the most effective anti-cancer responses. Targeting USP8 inhibits the proliferation of HCC and induces cell ferroptosis. In vivo xenograft and metastasis experiments indicate that inhibition of USP8 suppresses tumor growth and lung metastasis. DUB-IN-3 treatment or USP8 depletion decrease intracellular cystine levels and glutathione biosynthesis while increasing the accumulation of reactive oxygen species (ROS). Mechanistical studies reveal that USP8 stabilizes O-GlcNAc transferase (OGT) via inhibiting K48-specific poly-ubiquitination process on OGT protein at K117 site, and STE20-like kinase (SLK)-mediated S716 phosphorylation of USP8 is required for the interaction with OGT. Most importantly, OGT O-GlcNAcylates solute carrier family 7, member 11 (SLC7A11) at Ser26 in HCC cells, which is essential for SLC7A11 to import the cystine from the extracellular environment. Collectively, this study demonstrates that pharmacological inhibition or knockout of USP8 can inhibit the progression of HCC and induce ferroptosis via decreasing the stability of OGT, which imposes a great challenge that targeting of USP8 is a potential approach for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Cystine , Endopeptidases , Ubiquitin Thiolesterase , Endosomal Sorting Complexes Required for Transport , Amino Acid Transport System y+
7.
Phytochemistry ; 216: 113882, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37797664

ABSTRACT

Schisandra chinensis is an important traditional Chinese medicine and its main bioactive components are lignans and schinortriterpenoids (SNTs). The aim of this study was to explore the biologically rich SNTs from the stem and leaves of S. chinensis (SCSL). Here, seven previously undescribed 7/8/5 and 7/8/3 carbon skeleton SNTs (1-7) were reported. Their structures were determined by NMR, UV, MS, ECD, and X-ray diffraction analyses, and the neuroprotective activities of these compounds on corticosterone-induced PC12 cell injury were evaluated. The results showed that 1, 5, and 7 (25 µM) had neuroprotective effects, and the cell viability was increased by 20.07%, 14.24%, and 15.14% (positive control: 30.64%), respectively. These findings increased the number of described SNTs in SCSL, and the neuroprotective activities of all compounds indicated their potential application in neurodegenerative diseases.


Subject(s)
Lignans , Schisandra , Triterpenes , Molecular Structure , Schisandra/chemistry , Carbon , Triterpenes/chemistry , Lignans/pharmacology
8.
Heliyon ; 9(9): e19434, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809660

ABSTRACT

Purpose: Altered gene methylation precedes altered gene expression and the onset of disease. This study aimed to develop a potential model for predicting recurrence of early to mid-stage hepatocellular carcinoma (HCC) using methylation loci. Methods: We used data from early to mid-stage HCC patients (TNM I-II) in the TCGA-LIHC dataset and lasso-cox regression model to identify an 18-DNA methylation site panel from which to calculate the riskScore of patients. The correlation of high/low riskScore with recurrence-free survival (RFS) and immune microenvironment in HCC patients was analyzed by bioinformatics. It was also validated in the GSE56588 dataset and the final dynamic nomogram was constructed. Results: The results showed that riskScore was significantly correlated with RFS in HCC patients. The differential mutated genes between the two groups of HCC patients with high/low riskScore were mainly enriched in the TP53 signaling pathway. The immune microenvironment was better in HCC patients in the low-riskScore group compared to the high-riskScore group. This was validated in the GSE56588 dataset. Based on the subgroup stratification analysis of the relationship between high/low riskScore and RFS, as well as univariate and multivariate cox analyses, the riskScore was found to be independent of clinical indicators. We found that riskScore, vascular invasion and cirrhosis status could effectively differentiate RFS in HCC patients, and we also constructed prediction model based on these three factors. The model we constructed were validated in the TCGA-LIHC database and a web calculator was built for clinical use. Conclusion: The methylation riskScore is a predictor of RFS independent of clinical factors and can be used as a marker to predict recurrence in HCC patients.

9.
Liver Cancer ; 12(3): 262-276, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37601982

ABSTRACT

Introduction: Lenvatinib plus an anti-PD-1 antibody has shown promising antitumor effects in patients with advanced hepatocellular carcinoma (HCC), but with clinical benefit limited to a subset of patients. We developed and validated a radiomic-based model to predict objective response to this combination therapy in advanced HCC patients. Methods: Patients (N = 170) who received first-line combination therapy with lenvatinib plus an anti-PD-1 antibody were retrospectively enrolled from 9 Chinese centers; 124 and 46 into the training and validation cohorts, respectively. Radiomic features were extracted from pretreatment contrast-enhanced MRI. After feature selection, clinicopathologic, radiomic, and clinicopathologic-radiomic models were built using a neural network. The performance of models, incremental predictive value of radiomic features compared with clinicopathologic features and relationship between radiomic features and survivals were assessed. Results: The clinicopathologic model modestly predicted objective response with an AUC of 0.748 (95% CI: 0.656-0.840) and 0.702 (95% CI: 0.547-0.884) in the training and validation cohorts, respectively. The radiomic model predicted response with an AUC of 0.886 (95% CI: 0.815-0.957) and 0.820 (95% CI: 0.648-0.984), respectively, with good calibration and clinical utility. The incremental predictive value of radiomic features to clinicopathologic features was confirmed with a net reclassification index of 47.9% (p < 0.001) and 41.5% (p = 0.025) in the training and validation cohorts, respectively. Furthermore, radiomic features were associated with overall survival and progression-free survival both in the training and validation cohorts, but modified albumin-bilirubin grade and neutrophil-to-lymphocyte ratio were not. Conclusion: Radiomic features extracted from pretreatment MRI can predict individualized objective response to combination therapy with lenvatinib plus an anti-PD-1 antibody in patients with unresectable or advanced HCC, provide incremental predictive value over clinicopathologic features, and are associated with overall survival and progression-free survival after initiation of this combination regimen.

10.
Cell Commun Signal ; 21(1): 198, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37559097

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal human malignancies, and with quite limited treatment alternatives. The proteasome is responsible for most of the protein degradation in eukaryotic cells and required for the maintenance of intracellular homeostasis. However, its potential role in HCC is largely unknown. In the current study, we identified eukaryotic translation initiation factor 3 subunit H (EIF3H), belonging to the JAB1/MPN/MOV34 (JAMM) superfamily, as a bona fide deubiquitylase of O-GlcNAc transferase (OGT) in HCC. We explored that EIF3H was positively associated with OGT in HCC and was related to the unfavorable prognosis. EIF3H could interact with, deubiquitylate, and stabilize OGT in a deubiquitylase-dependent manner. Specifically, EIF3H was associated with the GT domain of ERα via its JAB/MP domain, thus inhibiting the K48-linked ubiquitin chain on OGT. Besides, we demonstrated that the knockdown of EIF3H significantly reduced OGT protein expression, cell proliferation and invasion, and caused G1/S arrest of HCC. We also found that the deletion of EIF3H prompted ferroptosis in HCC cells. Finally, the effects of EIF3H depletion could be reversed by further OGT overexpression, implying that the OGT status is indispensable for EIF3H function in HCC carcinogenesis. In summary, our study described the oncogenic function of EIF3H and revealed an interesting post-translational mechanism between EIF3H, OGT, and ferroptosis in HCC. Targeting the EIF3H may be a promising approach in HCC. Video Abstract.


Subject(s)
Carcinoma, Hepatocellular , Eukaryotic Initiation Factor-3 , Ferroptosis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Deubiquitinating Enzymes , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism
11.
Aging (Albany NY) ; 15(15): 7593-7615, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37540213

ABSTRACT

Tryptophan metabolism is associated with tumorigenesis and tumor immune response in various cancers. Liver is the main place where tryptophan catabolism is performed. However, the role of tryptophan metabolism in hepatocellular carcinoma (HCC) has not been well clarified. In the present study, we described the mutations of 42 tryptophan metabolism-related genes (TRPGs) in HCC cohorts. Then, HCC patients were well distributed into two subtypes based on the expression profiles of the 42 TRPGs. The clinicopathological characteristics and tumor microenvironmental landscape of the two subtypes were profiled. We also established a TRPGs scoring system and identified four hallmark TRPGs, including ACSL3, ADH1B, ALDH2, and HADHA. Univariate and multivariate Cox regression analysis revealed that the TRPG signature was an independent prognostic indicator for HCC patients. Besides, the predictive accuracy of the TRPG signature was assessed by the receiver operating characteristic curve (ROC) analysis. These results showed that the TRPG risk model had an excellent capability in predicting survival in both TCGA and GEO HCC cohorts. Moreover, we discovered that the TRPG signature was significantly related to the different immune infiltration and therapeutic drug sensitivity. The functional experiments and immunohistochemistry staining analysis also validated the results above. Our comprehensive analysis enhanced our understanding of TRPGs in HCC. A novel predictive model based on TRPGs was built, which may be considered as a beneficial tool for predicting the clinical outcomes of HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Tryptophan , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Prognosis , Immunotherapy , Aldehyde Dehydrogenase, Mitochondrial
12.
Cell Death Dis ; 14(6): 360, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311739

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common type of primary hepatic carcinoma, which is a growing public health problem worldwide. One of the main genetic alterations in HCC is the deregulated Wnt/ß-catenin signaling, activation of ß-catenin is associated with the progression of HCC. In the present study, we aimed to identify novel modulators in controlling ß-catenin ubiquitination and stability. USP8 was overexpressed in HCC tissues and correlated with ß-catenin protein level. High expression of USP8 indicated poor prognosis of HCC patients. USP8 depletion significantly decreased ß-catenin protein level, ß-catenin target genes expression and TOP-luciferase activity in HCC cells. Further mechanistic study revealed that the USP domain of USP8 interacted with the ARM domain of ß-catenin. USP8 stabilized ß-catenin protein via inhibiting K48-specific poly-ubiquitination process on ß-catenin protein. In addition, USP8 depletion inhibited the proliferation, invasion and stemness of HCC cells and conferred ferroptosis resistance, which effects could be further rescued by ß-catenin overexpression. In addition, the USP8 inhibitor DUB-IN-3 inhibited the aggressive phenotype and promoted ferroptosis of HCC cells through degradation of ß-catenin. Thus, our study demonstrated that USP8 activated the Wnt/beta-catenin signaling through a post-translational mechanism of ß-catenin. High expression of USP8 promoted the progression and inhibited ferroptosis of HCC. Targeting the USP8 may serve as a promising strategy for patients with HCC.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , beta Catenin , Liver Neoplasms/genetics , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Catenins , Endopeptidases , Ubiquitin Thiolesterase/genetics , Endosomal Sorting Complexes Required for Transport
13.
BMC Cancer ; 23(1): 416, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37158833

ABSTRACT

BACKGROUND: Pathologic complete response (pCR) following preoperative systemic therapy is associated with improved outcomes after subsequent liver transplant/resection in hepatocellular carcinoma (HCC). However, the relationship between radiographic and histopathological response remains unclear. METHODS: We retrospectively examined patients with initially unresectable HCC who received tyrosine kinase inhibitor (TKI) plus anti-programmed death 1 (PD-1) therapy before undergoing liver resection between March 2019 and September 2021 across 7 hospitals in China. Radiographic response was evaluated using mRECIST. A pCR was defined as no viable tumor cells in resected samples. RESULTS: We included 35 eligible patients, of whom 15 (42.9%) achieved pCR after systemic therapy. After a median follow-up of 13.2 months, tumors recurred in 8 non-pCR and 1 pCR patient. Before resection, there were 6 complete responses, 24 partial responses, 4 stable disease cases, and 1 progressive disease case, per mRECIST. Predicting pCR by radiographic response yielded an area under the receiver operating characteristic curve (AUC) of 0.727 (95% CI: 0.558-0.902), with an optimal cutoff value of 80% reduction in the enhanced area in MRI (called major radiographic response), which had a 66.7% sensitivity, 85.0% specificity, and a 77.1% diagnostic accuracy. When radiographic response was combined with α-fetoprotein response, the AUC was 0.926 (95% CI: 0.785-0.999); the optimal cutoff value was 0.446, which had a 91.7% sensitivity, 84.6%, specificity, and an 88.0% diagnostic accuracy. CONCLUSIONS: In patients with unresectable HCC receiving combined TKI/anti-PD 1 therapy, major radiographic response alone or combined with α-fetoprotein response may predict pCR.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , alpha-Fetoproteins , Retrospective Studies , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Neoplasm Recurrence, Local/diagnostic imaging , Immunotherapy , Protein Kinase Inhibitors/therapeutic use
14.
Front Cell Infect Microbiol ; 13: 1103626, 2023.
Article in English | MEDLINE | ID: mdl-37056706

ABSTRACT

Background: Mucormycosis is considered the fourth most common invasive fungal disease after candidiasis, aspergillosis and cryptococcosis. Lichtheimia species accounted for 5%-29% of all mucormycosis. However, available data on species-specific analysis of Lichtheimia infections are limited. Methods: This study included nine patients hospitalized in five hospitals in two cities in south China with mucormycosis or colonization caused by Lichtheimia species, diagnosed mainly by metagenomic next-generation sequencing (mNGS). The corresponding medical records were reviewed, and the clinical data analyzed included demographic characteristics, site of infection, host factors and type of underlying disease, diagnosis, clinical course, management, and prognosis. Results: In this study, nine patients with Lichtheimia infections or colonization had a recent history of haematological malignancy (33.3%), solid organ transplants (33.3%), pulmonary disease (22.2%), and trauma (11.1%) and were categorized as 11.1% (one case) proven, 66.7% (six cases) probable mucormycosis and 22.2% (two cases) colonization. Pulmonary mucormycosis or colonization was the predominant presentation in 77.8% of cases and mucormycosis caused by Lichtheimia resulted in death in four out of seven patients (57.1%). Conclusion: These cases highlight the importance of early diagnosis and combined therapy for these sporadic yet life-threatening infections. Further studies on the diagnosis and control of Lichtheimia infection in China are required.


Subject(s)
Invasive Fungal Infections , Mucorales , Mucormycosis , Humans , Mucormycosis/diagnosis , Mucormycosis/drug therapy , Mucormycosis/microbiology , Mucorales/genetics , Early Diagnosis , High-Throughput Nucleotide Sequencing
15.
Sci Rep ; 13(1): 4435, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932143

ABSTRACT

BRCA1 interacting helicase 1 (BRIP1) alteration was crucial in tumors and it was a potential therapeutic target in ovarian serous cystadenocarcinoma (OV). Although a small number of studies had focused on BRIP1, an extensive study of BRIP1 genetic mutation and its clinical application in different cancer types had not been analyzed. In the current study, we analyzed BRIP1 abnormal expression, methylation, mutation, and their clinical application via several extensive datasets, which covered over 10,000 tumor samples across more than 30 cancer types. The total mutation rate of BRIP1 was rare in pan cancer. Its alteration frequency, oncogenic effects, mutation, and therapeutic implications were different in each cancer. 242 BRIP1 mutations were found across 32 cancer types. UCEC had the highest alteration (mutation and CNV) frequency. In addition, BRIP1 was a crucial oncogenic factor in OV and BRCA. BRIP1 mutation in PRAD was targetable, and FDA had approved a new drug. Moreover, Kaplan-Meier curve analysis showed that BRIP1 expression and genetic aberrations were closely related to patient survival in several cancers, indicating their potential for application as new tumor markers and therapeutic targets. The current study profiled the total BRIP1 mutation spectrum and offered an extensive molecular outlook of BRIP1 in a pan cancer analysis. And it suggested a brand-new perspective for clinical cancer therapy.


Subject(s)
Fanconi Anemia Complementation Group Proteins , Ovarian Neoplasms , RNA Helicases , Female , Humans , Fanconi Anemia Complementation Group Proteins/genetics , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/therapy , Ovarian Neoplasms/pathology , Prognosis , RNA Helicases/genetics
16.
Int J Biol Macromol ; 230: 123255, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36639088

ABSTRACT

Despite their essential and multiple roles in biological processes, the molecular mechanism of Dof transcription factors (TFs) for responding to abiotic stresses is rarely reported in plants. We identified a soybean Dof gene GmDof41 which was involved in the responses to drought, salt, and exogenous ABA stresses. Overexpression of GmDof41 in soybean transgenic hairy roots attenuated H2O2 accumulation and regulated proline homeostasis, resulting in the drought and salt tolerance. Yeast one-hybrid and electrophoretic mobility shift assay (EMSA) illustrated that GmDof41 was regulated by the DREB1-type protein GmDREB1B;1 that could improve drought and salt tolerance in plants. Further studies illustrated GmDof41 can directly bind to the promoter of GmDREB2A which encodes a DREB2-type protein and affects abiotic stress tolerance in plants. Collectively, our results suggested that GmDof41 positively regulated drought and salt tolerance by correlating with GmDREB1B;1 and GmDREB2A. This study provides an important basis for further exploring the abiotic stress-tolerance mechanism of Dof TFs in soybean.


Subject(s)
Glycine max , Salt Tolerance , Glycine max/genetics , Glycine max/metabolism , Salt Tolerance/genetics , Droughts , Hydrogen Peroxide/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Nat Prod Res ; 37(24): 4081-4088, 2023.
Article in English | MEDLINE | ID: mdl-36661108

ABSTRACT

Euphorfinoids M and N (1 and 2), two previously undescribed ent-abietane diterpenoids, together with seven known analogues (3-9), were isolated from the roots of wild Euphorbia fischeriana. Their structures were elucidated by spectroscopic analysis, including extensive NMR, HR-ESIMS, ECD, and comparison with structurally related known analogues. Bioassays against proliferative effects of HeLa cell line showed that compound 1 was the most active with IC50 3.62 ± 0.31 µM.


Subject(s)
Antineoplastic Agents, Phytogenic , Diterpenes , Euphorbia , Humans , Abietanes/pharmacology , Abietanes/chemistry , Diterpenes/chemistry , Euphorbia/chemistry , HeLa Cells , Magnetic Resonance Spectroscopy , Plant Roots/chemistry , Molecular Structure , Antineoplastic Agents, Phytogenic/chemistry
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979451

ABSTRACT

Through reviewing the ancient and modern literature, the name, origin, producing area, quality evaluation, harvesting and processing methods of Trichosanthis Fructus(TF) and Trichosanthis Radix(TR) in famous classical formulas were systematically sorted out following the chronological order. The results showed that there were many nicknames of TF and TR, and Gualou and Tianhuafen have become the mainstream names for its fruit and root, respectively. Both of them took Trichosanthes kirilowii as the mainstream base. TF and TR have been used as medicines in the Han dynasty, and since the North and South dynasties, Leigong Paozhilun had been clear that the effects of peels, seeds, stems, roots were different. TF was used as medicine with intact fruits, harvested after maturity from September to October, hung and dried in the shade, and its quality has been summarized in recent times as being best for those who are mature, large, thick and pliable peels, orange-yellow in color, and with sufficient sugary properties. In ancient times, the processing of TR was mostly crushed or shredded with the peels and seeds, or processing for pancakes and creams. TR was used as medicine with the roots, it is harvested from November to December, peeled and dried in the sun, and its quality was best when it was deep in the soil, large, white, powdery, firm and delicate with few muscles and veins, and it was considered to be toxic when it was born in briney land. Processing method of TR was to do powder into the medicine in the Tang dynasty, and gradually evolved into direct slicing use in the Ming and Qing dynasties. Since the modern era, the authentic producing areas of TF and TR were in the vicinity of Lingbao, Henan province, known as Anyang Huafen, and in modern times, there are well-known production areas such as Anguo, which produces Qihuafen, and Jinan, which produces Changqing Gualou. In the Song dynasty, there was a habit of substituting Trichosanthis Semen for the whole herb, which was later corrected by the materia medica in Ming dynasty. Based on the results, It is suggested that T. kirilowii be selected as the basal plant for the development of famous classical formulas involving TR and TF. In Qingjin Huatantang, Trichosanthis Semen is processed by stir-frying method, while TR and TF in other five formulas from the Catalogue of Ancient Famous Classical Formulas(The First Batch) were all used in raw form.

19.
Journal of Forensic Medicine ; (6): 144-150, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-981848

ABSTRACT

OBJECTIVES@#To identify 1-(4-fluorophenyl)-2-(1-pyrrolidinyl) pentan-1-one (4-F-α-PVP) analog 1-(4-fluoro-3-methyl phenyl)-2-(1-pyrrolidinyl) pentan-1-one (4-F-3-Methyl-α-PVP) hydrochloride without reference substance.@*METHODS@#The direct-injection electron ionization-mass spectrometry (EI-MS), GC-MS, electrospray ionization-high resolution mass spectrometry (ESI-HRMS), ultra-high performance liquid chromatography-high resolution tandem mass spectrometry (UPLC-HRMS/MS), nuclear magnetic resonance (NMR), ion chromatography and Fourier transform infrared spectroscopy (FTIR) were integrated utilized to achieve the structural analysis and characterization of the unknown compound in the sample, and the cleavage mechanism of the fragment ions was deduced by EI-MS and UPLC-HRMS/MS.@*RESULTS@#By analyzing the direct-injection EI-MS, GC-MS, ESI-HRMS and UPLC-HRMS/MS of the compound in the samples, it was concluded that the unknown compound was a structural analog of 4-F-α-PVP, possibly with one more methyl group in the benzene ring. According to the analysis results of 1H-NMR and 13C-NMR, it was further proved that the methyl group is located at the 3-position of the benzene ring. Since the actual number of hydrogen in 1H-NMR analysis was one more than 4-F-3-Methyl-α-PVP neutral molecule, it was inferred that the compound existed in the form of salt. Ion chromatography analysis results showed that the compound contained chlorine anion (content 11.14%-11.16%), with the structural analysis of main functional group information by FTIR, the unknown compound was finally determined to be 4-F-3-Methyl-α-PVP hydrochloride.@*CONCLUSIONS@#A comprehensive method using EI-MS, GC-MS, ESI-HRMS, UPLC-HRMS/MS, NMR, ion chromatography and FTIR to identify 4-F-3-Methyl-α-PVP hydrochloride in samples is established, which will be helpful for the forensic science laboratory to identify this compound or other analog compounds.


Subject(s)
Benzene , Gas Chromatography-Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization , Chromatography, High Pressure Liquid/methods
20.
Journal of Forensic Medicine ; (6): 406-416, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1009373

ABSTRACT

In recent years, the types and quantities of fentanyl analogs have increased rapidly. It has become a hotspot in the illicit drug control field of how to quickly identify novel fentanyl analogs and to shorten the blank regulatory period. At present, the identification methods of fentanyl analogs that have been developed mostly rely on reference materials to target fentanyl analogs or their metabolites with known chemical structures, but these methods face challenges when analyzing new compounds with unknown structures. In recent years, emerging machine learning technology can quickly and automatically extract valuable features from massive data, which provides inspiration for the non-targeted screening of fentanyl analogs. For example, the wide application of instruments like Raman spectroscopy, nuclear magnetic resonance spectroscopy, high resolution mass spectrometry, and other instruments can maximize the mining of the characteristic data related to fentanyl analogs in samples. Combining this data with an appropriate machine learning model, researchers may create a variety of high-performance non-targeted fentanyl identification methods. This paper reviews the recent research on the application of machine learning assisted non-targeted screening strategy for the identification of fentanyl analogs, and looks forward to the future development trend in this field.


Subject(s)
Fentanyl , Substance Abuse Detection/methods , Mass Spectrometry/methods , Illicit Drugs/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...