Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Elife ; 122023 10 24.
Article in English | MEDLINE | ID: mdl-37874324

ABSTRACT

Selfish genetic elements can promote their transmission at the expense of individual survival, creating conflict between the element and the rest of the genome. Recently, a large number of toxin-antidote (TA) post-segregation distorters have been identified in non-obligate outcrossing nematodes. Their origin and the evolutionary forces that keep them at intermediate population frequencies are poorly understood. Here, we study a TA element in Caenorhabditis elegans called zeel-1;peel-1. Two major haplotypes of this locus, with and without the selfish element, segregate in C. elegans. We evaluate the fitness consequences of the zeel-1;peel-1 element outside of its role in gene drive in non-outcrossing animals and demonstrate that loss of the toxin peel-1 decreased fitness of hermaphrodites and resulted in reductions in fecundity and body size. These findings suggest a biological role for peel-1 beyond toxin lethality. This work demonstrates that a TA element can provide a fitness benefit to its hosts either during their initial evolution or by being co-opted by the animals following their selfish spread. These findings guide our understanding on how TA elements can remain in a population where gene drive is minimized, helping resolve the mystery of prevalent TA elements in selfing animals.


Subject(s)
Caenorhabditis elegans Proteins , Toxins, Biological , Animals , Caenorhabditis elegans/genetics , Antidotes , Repetitive Sequences, Nucleic Acid , Fertility , Gene Frequency , Caenorhabditis elegans Proteins/genetics
3.
Nat Commun ; 12(1): 1262, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627668

ABSTRACT

Multicellular organisms coordinate tissue specific responses to environmental information via both cell-autonomous and non-autonomous mechanisms. In addition to secreted ligands, recent reports implicated release of small RNAs in regulating gene expression across tissue boundaries. Here, we show that the conserved poly-U specific endoribonuclease ENDU-2 in C. elegans is secreted from the soma and taken-up by the germline to ensure germline immortality at elevated temperature. ENDU-2 binds to mature mRNAs and negatively regulates mRNA abundance both in the soma and the germline. While ENDU-2 promotes RNA decay in the soma directly via its endoribonuclease activity, ENDU-2 prevents misexpression of soma-specific genes in the germline and preserves germline immortality independent of its RNA-cleavage activity. In summary, our results suggest that the secreted RNase ENDU-2 regulates gene expression across tissue boundaries in response to temperature alterations and contributes to maintenance of stem cell immortality, probably via retaining a stem cell specific program of gene expression.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Endoribonucleases/metabolism , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Endoribonucleases/genetics , Germ-Line Mutation/genetics , RNA Stability/genetics , RNA Stability/physiology , RNA, Messenger/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Temperature
4.
iScience ; 23(10): 101591, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33083750

ABSTRACT

Many behaviors that are critical for survival and reproduction are expressed over extended time periods. The ability to inexpensively record and store large volumes of video data creates new opportunities to understand the biological basis of these behaviors and simultaneously creates a need for tools that can automatically quantify behaviors from large video datasets. Here, we demonstrate that 3D Residual Networks can be used to classify an array of complex behaviors in Lake Malawi cichlid fishes. We first apply pixel-based hidden Markov modeling combined with density-based spatiotemporal clustering to identify sand disturbance events. After this, a 3D ResNet, trained on 11,000 manually annotated video clips, accurately (>76%) classifies the sand disturbance events into 10 fish behavior categories, distinguishing between spitting, scooping, fin swipes, and spawning. Furthermore, animal intent can be determined from these clips, as spits and scoops performed during bower construction are classified independently from those during feeding.

5.
Article in English | MEDLINE | ID: mdl-32858477

ABSTRACT

Infections by parasitic nematodes inflict a huge burden on the health of humans and livestock throughout the world. Anthelmintic drugs are the first line of defense against these infections. Unfortunately, resistance to these drugs is rampant and continues to spread. To improve treatment strategies, we must understand the genetics and molecular mechanisms that underlie resistance. Studies of the fungus Aspergillus nidulans and the free-living nematode Caenorhabditis elegans discovered that a beta-tubulin gene is mutated in benzimidazole (BZ) resistant strains. In parasitic nematode populations, three beta-tubulin alleles, F167Y, E198A, and F200Y, have long been correlated with resistance. Additionally, improvements in sequencing technologies have identified new alleles - E198V, E198L, E198K, E198I, and E198Stop - also correlated with BZ resistance. However, none of these alleles have been proven to cause resistance. To empirically demonstrate this point, we independently introduced the F167Y, E198A, and F200Y alleles as well as two of the newly identified alleles, E198V and E198L, into the BZ susceptible C. elegans N2 genetic background using the CRISPR-Cas9 system. These genome-edited strains were exposed to both albendazole and fenbendazole to quantitatively measure animal responses to BZs. We used a range of concentrations for each BZ compound to define response curves and found that all five of the alleles conferred resistance to BZ compounds equal to a loss of the entire beta-tubulin gene. These results prove that the parasite beta-tubulin alleles cause resistance. The E198V allele is found at low frequencies along with the E198L allele in natural parasite populations, suggesting that it could affect fitness. We performed competitive fitness assays and demonstrated that the E198V allele reduces animal health, supporting the hypothesis that this allele might be less fit in field populations. Overall, we present a powerful platform to quantitatively assess anthelmintic resistance and effects of specific resistance alleles on organismal fitness in the presence or absence of the drug.


Subject(s)
Anthelmintics , Tubulin , Alleles , Animals , Anthelmintics/pharmacology , Benzimidazoles , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Drug Resistance , Humans , Tubulin/genetics
6.
PLoS Genet ; 16(2): e1008606, 2020 02.
Article in English | MEDLINE | ID: mdl-32092052

ABSTRACT

Over long evolutionary timescales, major changes to the copy number, function, and genomic organization of genes occur, however, our understanding of the individual mutational events responsible for these changes is lacking. In this report, we study the genetic basis of adaptation of two strains of C. elegans to laboratory food sources using competition experiments on a panel of 89 recombinant inbred lines (RIL). Unexpectedly, we identified a single RIL with higher relative fitness than either of the parental strains. This strain also displayed a novel behavioral phenotype, resulting in higher propensity to explore bacterial lawns. Using bulk-segregant analysis and short-read resequencing of this RIL, we mapped the change in exploration behavior to a spontaneous, complex rearrangement of the rcan-1 gene that occurred during construction of the RIL panel. We resolved this rearrangement into five unique tandem inversion/duplications using Oxford Nanopore long-read sequencing. rcan-1 encodes an ortholog to human RCAN1/DSCR1 calcipressin gene, which has been implicated as a causal gene for Down syndrome. The genomic rearrangement in rcan-1 creates two complete and two truncated versions of the rcan-1 coding region, with a variety of modified 5' and 3' non-coding regions. While most copy-number variations (CNVs) are thought to act by increasing expression of duplicated genes, these changes to rcan-1 ultimately result in the reduction of its whole-body expression due to changes in the upstream regions. By backcrossing this rearrangement into a common genetic background to create a near isogenic line (NIL), we demonstrate that both the competitive advantage and exploration behavioral changes are linked to this complex genetic variant. This NIL strain does not phenocopy a strain containing an rcan-1 loss-of-function allele, which suggests that the residual expression of rcan-1 is necessary for its fitness effects. Our results demonstrate how colonization of new environments, such as those encountered in the laboratory, can create evolutionary pressure to modify gene function. This evolutionary mismatch can be resolved by an unexpectedly complex genetic change that simultaneously duplicates and diversifies a gene into two uniquely regulated genes. Our work shows how complex rearrangements can act to modify gene expression in ways besides increased gene dosage.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , DNA-Binding Proteins/genetics , Evolution, Molecular , Exploratory Behavior , Genetic Fitness/genetics , Intracellular Signaling Peptides and Proteins/physiology , Alleles , Animals , Caenorhabditis elegans Proteins/genetics , Gene Duplication , Inbreeding , Intracellular Signaling Peptides and Proteins/genetics , Loss of Function Mutation , Male
7.
Elife ; 82019 09 09.
Article in English | MEDLINE | ID: mdl-31498079

ABSTRACT

Genes can encode multiple isoforms, broadening their functions and providing a molecular substrate to evolve phenotypic diversity. Evolution of isoform function is a potential route to adapt to new environments. Here we show that de novo, beneficial alleles in the nurf-1 gene became fixed in two laboratory lineages of C. elegans after isolation from the wild in 1951, before methods of cryopreservation were developed. nurf-1 encodes an ortholog of BPTF, a large (>300 kD) multidomain subunit of the NURF chromatin remodeling complex. Using CRISPR-Cas9 genome editing and transgenic rescue, we demonstrate that in C. elegans, nurf-1 has split into two, largely non-overlapping isoforms (NURF-1.D and NURF-1.B, which we call Yin and Yang, respectively) that share only two of 26 exons. Both isoforms are essential for normal gametogenesis but have opposite effects on male/female gamete differentiation. Reproduction in hermaphrodites, which involves production of both sperm and oocytes, requires a balance of these opposing Yin and Yang isoforms. Transgenic rescue and genetic position of the fixed mutations suggest that different isoforms are modified in each laboratory strain. In a related clade of Caenorhabditis nematodes, the shared exons have duplicated, resulting in the split of the Yin and Yang isoforms into separate genes, each containing approximately 200 amino acids of duplicated sequence that has undergone accelerated protein evolution following the duplication. Associated with this duplication event is the loss of two additional nurf-1 transcripts, including the long-form transcript and a newly identified, highly expressed transcript encoded by the duplicated exons. We propose these lost transcripts are non-functional side products necessary to transcribe the Yin and Yang transcripts in the same cells. Our work demonstrates how gene sharing, through the production of multiple isoforms, can precede the creation of new, independent genes.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Chromosomal Proteins, Non-Histone/genetics , Evolution, Molecular , Protein Isoforms/genetics , Animals , Caenorhabditis elegans/physiology , Chromatin Assembly and Disassembly , Female , Gametogenesis , Male
8.
Elife ; 72018 10 17.
Article in English | MEDLINE | ID: mdl-30328811

ABSTRACT

The standard reference Caenorhabditis elegans strain, N2, has evolved marked behavioral changes in social feeding behavior since its isolation from the wild. We show that the causal, laboratory-derived mutations in two genes, npr-1 and glb-5, confer large fitness advantages in standard laboratory conditions. Using environmental manipulations that suppress social/solitary behavior differences, we show the fitness advantages of the derived alleles remained unchanged, suggesting selection on these alleles acted through pleiotropic traits. Transcriptomics, developmental timing, and food consumption assays showed that N2 animals mature faster, produce more sperm, and consume more food than a strain containing ancestral alleles of these genes regardless of behavioral strategies. Our data suggest that the pleiotropic effects of glb-5 and npr-1 are a consequence of changes to O2 -sensing neurons that regulate both aerotaxis and energy homeostasis. Our results demonstrate how pleiotropy can lead to profound behavioral changes in a popular laboratory model.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Feeding Behavior , Genetic Fitness , Social Behavior , Alleles , Animals , Behavior, Animal , Gene Expression Regulation , Genes, Helminth , Neurons/physiology , Organ Size , Oxygen/metabolism , Pharynx/anatomy & histology , Principal Component Analysis , Reproduction , Spermatogenesis
9.
G3 (Bethesda) ; 7(1): 289-298, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27866149

ABSTRACT

Species inhabit a variety of environmental niches, and the adaptation to a particular niche is often controlled by genetic factors, including gene-by-environment interactions. The genes that vary in order to regulate the ability to colonize a niche are often difficult to identify, especially in the context of complex ecological systems and in experimentally uncontrolled natural environments. Quantitative genetic approaches provide an opportunity to investigate correlations between genetic factors and environmental parameters that might define a niche. Previously, we have shown how a collection of 208 whole-genome sequenced wild Caenorhabditis elegans can facilitate association mapping approaches. To correlate climate parameters with the variation found in this collection of wild strains, we used geographic data to exhaustively curate daily weather measurements in short-term (3 month), middle-term (one year), and long-term (three year) durations surrounding the date of strain isolation. These climate parameters were used as quantitative traits in association mapping approaches, where we identified 11 quantitative trait loci (QTL) for three climatic variables: elevation, relative humidity, and average temperature. We then narrowed the genomic interval of interest to identify gene candidates with variants potentially underlying phenotypic differences. Additionally, we performed two-strain competition assays at high and low temperatures to validate a QTL that could underlie adaptation to temperature and found suggestive evidence supporting that hypothesis.


Subject(s)
Adaptation, Physiological/genetics , Caenorhabditis elegans/genetics , Gene-Environment Interaction , Quantitative Trait Loci/genetics , Animals , Base Sequence/genetics , Caenorhabditis elegans/physiology , Chromosome Mapping , Climate , Genome , Genotype , Phenotype
10.
PLoS Genet ; 12(7): e1006219, 2016 07.
Article in English | MEDLINE | ID: mdl-27467070

ABSTRACT

Evolutionary life history theory seeks to explain how reproductive and survival traits are shaped by selection through allocations of an individual's resources to competing life functions. Although life-history traits evolve rapidly, little is known about the genetic and cellular mechanisms that control and couple these tradeoffs. Here, we find that two laboratory-adapted strains of C. elegans descended from a single common ancestor that lived in the 1950s have differences in a number of life-history traits, including reproductive timing, lifespan, dauer formation, growth rate, and offspring number. We identified a quantitative trait locus (QTL) of large effect that controls 24%-75% of the total trait variance in reproductive timing at various timepoints. Using CRISPR/Cas9-induced genome editing, we show this QTL is due in part to a 60 bp deletion in the 3' end of the nurf-1 gene, which is orthologous to the human gene encoding the BPTF component of the NURF chromatin remodeling complex. Besides reproduction, nurf-1 also regulates growth rate, lifespan, and dauer formation. The fitness consequences of this deletion are environment specific-it increases fitness in the growth conditions where it was fixed but decreases fitness in alternative laboratory growth conditions. We propose that chromatin remodeling, acting through nurf-1, is a pleiotropic regulator of life history trade-offs underlying the evolution of multiple traits across different species.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Chromosomal Proteins, Non-Histone/genetics , Evolution, Molecular , Selection, Genetic/genetics , Animals , CRISPR-Cas Systems , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , Humans , Phenotype , Quantitative Trait Loci/genetics , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...