Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(17): e37319, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296065

ABSTRACT

The organism's normal physiological function is greatly impacted in a febrile environment, leading to the manifestation of pathological conditions including elevated body temperature, dehydration, gastric bleeding, and spermatogenic dysfunction. Numerous lines of evidence indicate that heat stress significantly impacts the brain's structure and function. Previous studies have demonstrated that both animals and humans experience cognitive impairment as a result of exposure to high temperatures. However, there is a lack of research on the effects of prolonged exposure to high-temperature environments on learning and memory function, as well as the underlying molecular regulatory mechanisms. In this study, we examined the impact of long-term heat stress exposure on spatial memory function in rats and conducted transcriptome sequencing analysis of rat hippocampal tissues to identify the crucial molecular targets affected by prolonged heat stress exposure. It was found that the long-term heat stress impaired rats' spatial memory function due to the pathological damages and apoptosis of hippocampal neurons at the CA3 region, which is accompanied with the decrease of growth hormone level in peripheral blood. RNA sequencing analysis revealed the signaling pathways related to positive regulation of external stimulation response and innate immune response were dramatically affected by heat stress. Among the verified differentially expressed genes, the knockdown of Arhgap36 in neuronal cell line HT22 significantly enhances the cell apoptosis, suggesting the impaired spatial memory induced by long-term heat stress may at least partially be mediated by the dysregulation of Arhgap36 in hippocampal neurons. The uncovered relationship between molecular changes in the hippocampus and behavioral alterations induced by long-term heat stress may offer valuable insights for the development of therapeutic targets and protective drugs to enhance memory function in heat-exposed individuals.

2.
Birth Defects Res ; 116(2): e2318, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38362594

ABSTRACT

BACKGROUND: Arginase 1 (Arg1) encodes a key enzyme that catalyzes the metabolism of arginine to ornithine and urea. In our recent study, we found that knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. As the most abundant internal mRNA modification, N6 -methyladenosine (m6 A) has been found to play important roles in lung development and cellular differentiation. However, if the knockdown of Arg1 affects the RNA m6A modification in fetal lungs remains unknown. METHODS: In the current study, the RNA m6A levels and the expression of RNA m6A related enzymes were validated in 13.0 dpc fetal lungs that Arg1 was knocked down by adeno-associated virus carrying Arg1-shRNA, using western blot, immunofluorescence, and RT-qPCR. RESULTS: No statistical differences were found in the expression of methyltransferase, demethylases, and binding proteins in the fetal lungs between AAV-shArg1-injected mice and AAV-2/9-injected mice. Besides, there is no significant change of overall RNA m6A level in fetal lungs from AAV-shArg1-injected mice, compared with that from AAV-2/9-injected mice. CONCLUSIONS: These results indicate that arginase 1 does not affect RNA m6A methylation in mouse fetal lung, and the mechanisms other than RNA m6A modification underlying the effects of Arg1 knockdown on the fetal lung development and their interaction with labor initiation need to be further explored.


Subject(s)
Arginase , RNA Methylation , Mice , Animals , Arginase/genetics , Arginase/metabolism , Lung/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , RNA/metabolism
3.
Nanoscale ; 12(13): 6983-6990, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32207501

ABSTRACT

Two-dimensional (2D) vdW materials have been integrated into optoelectronic devices to achieve exceptional functionality. However, the integration of large-area 2D thin films into organic light-emitting devices (OLEDs) remains challenging because of the finite number of inorganic 2D materials and the high-temperature requirements of their deposition process. The construction of 2D organometallic materials holds immense potential because of their solution synthesis and unlimited structural and functional diversity. Here, we report a facile route using an oil-water interfacial coordination reaction between organic ligands and divalent metal ions to synthesize crystalline quasi-2D organometallic bis(dithiolato)nickel (NiDT) nanosheets with a centimeter scale and a tunable thickness. The NiDT nanosheets can be directly integrated into OLEDs for use as a hole buffer layer and a fluorescent mounting medium without the aid of a transfer process. Moreover, OLEDs with NiDT nanosheets show not only comparable efficiency to conventional OLEDs but also prolonged device lifetime by nearly 2 times. These results open up a new dimension to use quasi-2D organometallic nanosheets as functional layers in large-area organic devices.

4.
Macromol Biosci ; 19(4): e1800416, 2019 04.
Article in English | MEDLINE | ID: mdl-30645043

ABSTRACT

Nanocarrier-based cancer therapy suffers from poor tumor penetration and unsatisfied therapeutical efficacy, as its vascular extravasation efficiency is often compromised by the intrinsic physiological heterogeneity in tumor tissues. In this work, novel near infrared (NIR)-responsive CuS-loaded nanogels are prepared to deliver anticarcinogen into the tumor. These hybrid polymeric nanogels possess high photothermal conversion efficiency, and are able to load a large amount of antitumor drug (e.g., doxorubicin [DOX]). More importantly, the thermal heat could induce self-destruction of the big-size framework of hybrid nanogels into small nanoparticles, which greatly facilitates tumor penetration to release DOX deep inside the tumor, as validated by photoacoustic (PA) imaging which exhibits 26.3 times enhancement at the interior region compared to signals of groups without laser irradiation. Such structural alteration, combined with strong photothermal and chemotherapy effects, leads to remarkable inhibition of tumor growth in mice. As a result, this NIR-induced disintegration of CuS-loaded nanogels provides a novel drug delivery strategy and might open a new window for clinical cancer treatment.


Subject(s)
Antineoplastic Agents , Copper , Doxorubicin , Drug Delivery Systems , Nanostructures , Neoplasms, Experimental/drug therapy , Sulfides , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Copper/chemistry , Copper/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Female , HEK293 Cells , Hep G2 Cells , Humans , Mice , Mice, Inbred BALB C , Nanostructures/chemistry , Nanostructures/therapeutic use , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism , Sulfides/chemistry , Sulfides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL