Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 257(Pt 2): 128707, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101663

ABSTRACT

The proper management of phosphorus (P) from wastewater is crucial for sustainable development consideration. Herein, we developed a strategy which combines adsorption via tailored adsorbents and electrochemically-driven struvite precipitation (ESP) for P recovery. Novel polydopamine-modified Ce-MOF/chitosan composite beads (PDA@Ce-MOF-CS) were prepared by a facile in situ growth of Ce-MOF crystals incorporated natural polymers and PDA coating. The physicochemical properties of PDA@Ce-MOF-CS were characterized. Both batch and fixed-bed column experiments were conducted to evaluate its adsorption performances. Representatively, PDA@Ce-MOF-CS performed good selectivity for P removal and exhibited a maximum adsorption capacity of 161.13 mg P/g at pH 3 and 318 K. Meanwhile, the developed adsorbent showed great reusability after ten regeneration cycles as well as good adsorption stability. The dominant mechanism for efficient P adsorption included electrostatic attraction, surface precipitation and ligand exchange. Interestingly, PDA@Ce-MOF-CS exhibited a remarkable adsorption capacity of 92.86 mg P/g by treating real P-rich electroplating wastewater, and the desorbed P in the eluate could be effectively recovered and converted into a solid fertilizer as struvite via ESP. Overall, this work provided a new research direction for P recovery from wastewater as struvite by combined technologies with the help of macroscopic MOF architectures.


Subject(s)
Chitosan , Water Pollutants, Chemical , Struvite , Phosphorus , Chitosan/chemistry , Wastewater , Adsorption , Water Pollutants, Chemical/analysis , Kinetics , Phosphates/chemistry
2.
Angew Chem Int Ed Engl ; 62(39): e202309027, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37552154

ABSTRACT

The precise control over hierarchical self-assembly of superstructures relying on the elaboration of multiple noncovalent interactions between basic building blocks is both elusive and highly desirable. We herein report a terpyridine-based metallo-cage T with a tetrahedral motif and utilized it as an efficient building block for the controlled hierarchical self-assembly of superstructures in response to different halide ions. Initially, the hierarchical superstructure of metallo-cage T adopted a hexagonal close-packed structure. By adding Cl- /Br- or I- , drastically different hierarchical superstructures with highly-tight hexagonal packing or graphite-like packing arrangements, respectively, have been achieved. These unusual halide-ion-triggered hierarchical structural changes resulted in quite distinct intermolecular channels, which provided new insights into the mechanism of three-dimensional supramolecular aggregation and crystal growth based on macromolecular construction. In addition, the chiral induction of the metallo-cage T can be realized with the addition of chiral anions, which stereoselectively generated either PPPP- or MMMM-type enantiomers.

3.
Inorg Chem ; 62(13): 5095-5104, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36950740

ABSTRACT

In coordination-driven metal-organic cages, the transition metal ions are generally utilized as linkages. Employment of its unique properties with the aim of achieving specific applications still presents great challenges. Herein, we report a decametric metal-organic cage named pentagonal prism (Mn20LC10) based on Tpy-Mn(II)-Tpy connectivity (Tpy = 2,2':6',2″-terpyridine) in which Mn(II) serves as a linker and endows the resulting metal-organic cage with good photosensitivity. In the photooxidation of benzaldehyde, pentagonal prism Mn20LC10 showed a significantly increased level of 1O2 production, the fastest conversion time, good recyclability, and substrate versatility due to its greatly improved intersystem crossing ability. Notably, the abundant active sites of metal pentagonal prism Mn20LC10 enable its photooxidation under solvent-free and daylight conditions. This work provides approaches for the development of inexpensive, green, and low-cost photosensitizer systems.

4.
Sci Bull (Beijing) ; 66(11): 1063-1072, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-36654340

ABSTRACT

Layered double hydroxides (LDHs) with decent oxygen evolution reaction (OER) activity have been extensively studied in the fields of energy storage and conversion. However, their poor conductivity, ease of agglomeration, and low intrinsic activity limit their practical application. To date, improvement of the intrinsic activity and stability of NiFe-LDHs through the introduction of heteroatoms or its combination with other conductive substrates to enhance their water-splitting performance has drawn increasing attention. In this study, vertically interlaced ternary phosphatised nickel/iron hybrids grown on the surface of titanium carbide flakes (NiFeP/MXene) were successfully synthesised through a hydrothermal reaction and phosphating calcination process. The optimised NiFeP/MXene exhibited a low overpotential of 286 mV at 10 mA cm-2 and a Tafel slope of 35 mV dec-1 for the OER, which exceeded the performance of several existing NiFe-based catalysts. NiFeP/MXene was further used as a water-splitting anode in an alkaline electrolyte, exhibiting a cell voltage of only 1.61 V to achieve a current density of 10 mA cm-2. Density functional theory (DFT) calculations revealed that the combination of MXene acting as a conductive substrate and the phosphating process can effectively tune the electronic structure and density of the electrocatalyst surface to promote the energy level of the d-band centre, resulting in an enhanced OER performance. This study provides a valuable guideline for designing high-performance MXene-supported NiFe-based OER catalysts.

5.
Environ Sci Technol ; 50(21): 12022-12029, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27689510

ABSTRACT

The development of suitable draw solution in forward osmosis (FO) process has attracted the growing attention for water treatment purpose. In this study, a series of organic phosphonate salts (OPSs) are synthesized by one-step Mannich-like reaction, confirmed by FTIR and NMR characterizations, and applied as novel draw solutes in FO applications. Their solution properties including osmotic pressures and viscosities, as well as their FO performance as a function of the solution concentration are investigated systematically. In FO process, a higher water flux of 47-54 LMH and a negligible reverse solute flux can be achieved in the PRO (AL-DS) mode (active layer faces the draw solution) using a homemade thin-film composite membrane (PSF-TFC) and deionized water as the feed solution. Among all OPS draw solutes, the tetraethylenepentamine heptakis(methylphosphonic) sodium salt (TPHMP-Na) exhibits the best FO flux at 0.5 mol/kg concentration, which is further applied for the separation of emulsified oil-water mixture. The recovery of diluted OPS solutions is carried out via a nanofiltration (NF) system with a rejection above 92%. The aforementioned features show the great potential of OPS compounds as a novel class of draw solutes for FO applications.


Subject(s)
Membranes, Artificial , Organophosphonates , Osmosis , Salts , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Salts/chemical synthesis , Salts/chemistry , Solutions/chemistry , Water Purification
6.
Bioorg Med Chem ; 20(5): 1665-70, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22305934

ABSTRACT

As potential inhibitors of Escherichia coli pyruvate dehydrogenase complex E1 (PDHc E1), a series of novel 2-methylpyrimidine-4-ylamine derivatives were designed based on the structure of the active site of PDHc E1 and synthesized using 'click chemistry'. Their inhibitory activity in vitro against PDHc E1 and fungicidal activity were examined. Some of these compounds such as 3g, 3l, 3n, 3o, and 5b demonstrated to be effective inhibitors of PDHc E1 from E. coli and exhibited antifungal activity. SAR analysis indicated that both, the inhibitory potency against E. coli PDHc E1 and the antifungal activity of title compounds, could be increased greatly by optimizing substituent groups in the compounds. The structures of substituent group in 5-position on the 1,2,3-triazole and 4-position on the benzene ring in title compounds were found to play a pivotal role in both above-mentioned biological activities. Amongst all the compounds, compound 5b with iodine in the 5-position of 1,2,3-triazole and with nitryl group in the 4-position of benzene ring acted as the best inhibitor against PDHc E1 from E. coli. It was also found to be the most effective compound with higher antifungal activity against Rhizoctonia solani and Botrytis cinerea at the dosage of 100 µg mL(-1). Therefore, in this study, compound 5b was used as a lead compound for further optimization.


Subject(s)
Amines/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , Pyrimidines/pharmacology , Pyruvate Dehydrogenase (Lipoamide)/antagonists & inhibitors , Amines/chemical synthesis , Amines/chemistry , Catalytic Domain , Click Chemistry , Enzyme Inhibitors/chemical synthesis , Escherichia coli/drug effects , Inhibitory Concentration 50 , Molecular Dynamics Simulation , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyruvate Dehydrogenase (Lipoamide)/chemistry , Pyruvate Dehydrogenase (Lipoamide)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...