Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38387014

ABSTRACT

BACKGROUND: This study aims to evaluate the effectiveness of computerized cognitive training (CCT) on white matter (WM) neuroplasticity and neuropsychological performance. METHODS: A total of 128 community older adults (64.36 ±â€…6.14 years) were recruited and randomly assigned to the intervention or control group. Participants in the intervention group received a home-based, multidomain, and adaptive CCT for 30 minutes, 2 days per week for 1 year. Neuropsychological assessments, diffusion magnetic resonance imaging (MRI), and T1-weighted structural MRI were performed at the pre- and post-intervention visits. RESULTS: Eighty-one of 128 participants (41 in the intervention group and 40 in the control group) completed the 1-year intervention, and 61 of them (27 in the intervention group and 34 in the control group) underwent MRI scans twice. After excluding attrition bias, a significant time-by-group interaction on the Stroop Color-Word Test (SCWT; F = 51.85, p < .001) was found, showing improvement in the intervention group and a decline in the control group. At the brain level, the intervention group exhibited increased axial diffusivity in the left posterior thalamic radiation, and this increase was significantly correlated with reduced SCWT reaction time (r = ‒0.42, p = .029). No significant time-by-group interactions were found for gray matter volume. CONCLUSIONS: Our findings suggest that conducting multidomain adaptive CCT is an effective and feasible method to counteract cognitive decline in older adults, with WM neuroplasticity underpinning cognitive improvements. This study contributes to the understanding of the neural basis for the beneficial effect of CCT for older adults.


Subject(s)
Cognitive Dysfunction , White Matter , Aged , Humans , Brain/diagnostic imaging , Cognition , Cognitive Dysfunction/therapy , Cognitive Dysfunction/psychology , Cognitive Training , White Matter/diagnostic imaging , Middle Aged
2.
Adv Exp Med Biol ; 1419: 85-97, 2023.
Article in English | MEDLINE | ID: mdl-37418208

ABSTRACT

The normal aging process brings changes in brain structure, function, and energy metabolism, which are presumed to contribute to the age-related decline in brain function and cognitive ability. This chapter aims to summarize the aging patterns of brain structure, function, and energy metabolism to distinguish them from the pathological changes associated with neurodegenerative diseases and explore protective factors in aging. We first described the normal atrophy pattern of cortical gray matter with age, which is negatively affected by some neurodegenerative diseases and is protected by a healthy lifestyle, such as physical exercise. Next, we summarized the main types of age-related white matter lesions, including white matter atrophy and hyperintensity. Age-related white matter changes mainly occurred in the frontal lobe, and white matter lesions in posterior regions may be an early sign of Alzheimer's disease. In addition, the relationship between brain activity and various cognitive functions during aging was discussed based on electroencephalography, magnetoencephalogram, and functional magnetic resonance imaging. An age-related reduction in occipital activity is coupled with increased frontal activity, which supports the posterior-anterior shift in aging (PASA) theory. Finally, we discussed the relationship between amyloid-ß deposition and tau accumulation in the brain, as pathological manifestations of neurodegenerative disease and aging.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/metabolism , Brain/metabolism , Aging/pathology , Alzheimer Disease/metabolism , Magnetic Resonance Imaging , Energy Metabolism , Atrophy/pathology
SELECTION OF CITATIONS
SEARCH DETAIL