Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Pharmacol ; 13: 1039103, 2022.
Article in English | MEDLINE | ID: mdl-36467073

ABSTRACT

Disrupted neonatal lung angiogenesis and alveologenesis often give rise to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. Hyperoxia-induced pulmonary vascular and alveolar damage in premature infants is one of the most common and frequent factors contributing to BPD. The purpose of the present study was to explore the key molecules and the underlying mechanisms in hyperoxia-induced lung injury in neonatal mice and to provide a new strategy for the treatment of BPD. In this work, we reported that hyperoxia decreased the proportion of endothelial cells (ECs) in the lungs of neonatal mice. In hyperoxic lung ECs of neonatal mice, we detected upregulated fibroblast growth factor receptor 1 (FGFR1) expression, accompanied by upregulation of the classic downstream signaling pathway of activated FGFR1, including the ERK/MAPK signaling pathway and PI3K-Akt signaling pathway. Specific deletion of Fgfr1 in the ECs of neonatal mice protected the lungs from hyperoxia-induced lung injury, with improved angiogenesis, alveologenesis and respiratory metrics. Intriguingly, the increased Fgfr1 expression was mainly attributed to aerosol capillary endothelial (aCap) cells rather than general capillary endothelial (gCap) cells. Deletion of endothelial Fgfr1 increased the expression of gCap cell markers but decreased the expression of aCap cell markers. Additionally, inhibition of FGFR1 by an FGFR1 inhibitor improved alveologenesis and respiratory metrics. In summary, this study suggests that in neonatal mice, hyperoxia increases the expression of endothelial FGFR1 in lung ECs and that deficiency of endothelial Fgfr1 can ameliorate hyperoxia-induced BPD. These data suggest that FGFR1 may be a potential therapeutic target for BPD, which will provide a new strategy for the prevention and treatment of BPD.

2.
Br J Nutr ; 124(8): 797-808, 2020 10 28.
Article in English | MEDLINE | ID: mdl-32436488

ABSTRACT

Bile acids (BA) have emerged as signalling molecules regulating intestinal physiology. The importance of intestinal microbiota in production of secondary BA, for example, lithocholic acid (LCA) which impairs enterocyte proliferation and permeability, triggered us to determine the effects of oral probiotics on intestinal BA metabolism. Piglets were weaned at 28 d of age and allocated into control (CON, n 14) or probiotic (PRO, n 14) group fed 50 mg of Lactobacillus plantarum daily, and gut microbiota and BA profile were determined. To test the potential interaction of LCA with bacteria endotoxins in inducing damage of enterocytes, IPEC-J2 cells were treated with LCA, lipopolysaccharide (LPS) and LCA + LPS and expressions of genes related to inflammation, antioxidant capacity and nutrient transport were determined. Compared with the CON group, the PRO group showed lower total LCA level in the ileum and higher relative abundance of the Lactobacillus genus in faeces. In contrast, the relative abundances of Bacteroides, Clostridium_sensu_stricto_1, Parabacteroides and Ruminococcus_1, important bacteria genera in BA biotransformation, were all lower in the PRO than in the CON group. Moreover, PRO piglets had lower postprandial glucagon-like peptide-1 level, while higher glucose level than CON piglets. Co-administration of LPS and LCA led to down-regulated expression of glucose and peptide transporter genes in IPEC-J2 cells. Altogether, oral L. plantarum altered BA profile probably by modulating relative abundances of gut microbial genera that play key roles in BA metabolism and might consequently impact glucose homoeostasis. The detrimental effect of LCA on nutrient transport in enterocytes might be aggravated under LPS challenge.


Subject(s)
Bile Acids and Salts/metabolism , Blood Glucose/drug effects , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Lactobacillus plantarum , Animal Feed/microbiology , Animals , Homeostasis/drug effects , Swine , Weaning
3.
Biochem Biophys Res Commun ; 513(4): 1027-1034, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31010678

ABSTRACT

Colorectal cancer (CRC) and liver cancer are the second and fourth leading causes of cancer-related deaths in the whole world, respectively, and each year over 1.6 million people die from these diseases. To identify driver genes in CRC and liver cancer, we have performed Sleeping Beauty transposon mutagenesis screens in mouse models. Zinc finger RNA binding protein, ZFR, was one of the novel candidate cancer genes identified in these forward genetic screens. Consistent with this discovery, a pan-cancer analysis of sequencing results of thousands of human cancer genomes demonstrated that ZFR is a potential potent oncogene. In this study, we aimed to investigate ZFR's roles in both types of cancer and found that overexpression of ZFR in CRC and liver cancer cells led to accelerated tumor development. Consistently, knockdown of ZFR resulted in significantly decelerated tumor development. ZFR overexpression also promoted tumor development of immortalized mouse liver cells. ZFR overexpression and shRNA knockdown led to accelerated and decelerated cell proliferation, respectively, indicating that ZFR promotes tumor development mainly by regulating cell proliferation. To identify ZFR's targets in transcription, we performed whole transcriptome sequencing using ZFR small interfering RNAs in a primary human colon cell line. All potential target genes were validated by real time PCR. FAM49B was a tumor suppressor candidate for ZFR targets. When we knocked down the expression of FAM49B in CRC and liver cancer cells, we observed significantly accelerated cell proliferation, consistent with the results with ZFR overexpression. The results presented here demonstrate the oncogenic role of ZFR in both CRC and liver cancer, providing a potential drug target for both cancers' treatment. We also identified ZFR's potential transcriptional targets, and further investigations on those targets, especially FAM49B, will help us understand more about the important role of ZFR in digestive system cancers.


Subject(s)
Carcinogenesis/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Liver Neoplasms/pathology , RNA-Binding Proteins/pharmacology , Animals , Cell Line , Cell Line, Tumor , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/pharmacology , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/pharmacology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
Lipids Health Dis ; 15(1): 215, 2016 Dec 09.
Article in English | MEDLINE | ID: mdl-27938408

ABSTRACT

BACKGROUND: Periparturient mastitis is the most prevalent disease affecting lactating animals. However, it has long been relied on antibiotics to deal with mastitis, leading to a potential threat to food safety. This study was aimed to investigate the expression of pro-inflammatory cytokines in mammary glands of sows around parturition when mastitis and oxidative stress usually occur, and evaluate the anti-inflammatory effect of docosahexenoic acid (DHA) in porcine mammary epithelial cells (PMEC) challenged by lipopolysaccharide (LPS). METHODS: Mammary tissues and blood samples were collected from seven pregnant sows at different reproductive stages. Primarily cultured PMEC at passage 4 were assigned to four treatments: basal medium (control), basal medium with LPS (10 µg/mL) (LPS treatment), basal medium with LPS (10 µg/mL) and DHA (100 or 200 µM) (LPS + DHA treatments), and cell samples were harvested after 24 h incubation. The measurements included oxidative stress markers in blood samples and gene expression in mammary tissues and PMEC samples. RESULTS: Serum α-tocopherol concentration was lower at parturition than at day 90 of gestation and day 28 post parturition, while serum malondialdehyde concentration was higher at day 28 post parturition than at day 90 of gestation. Higher interleukin (IL)-1ß mRNA abundance while lower LPS binding protein mRNA abundance in mammary tissues were observed at day 90 of gestation compared with that at parturition and at day 28 and 35 post parturition. Mammary tumor necrosis factor (TNF)-α mRNA abundance were lower at parturition than at day 90 of gestation and day 28 and 35 post parturition, whereas mammary IL-8 mRNA abundance were lower at parturition than at day 35 post parturition. In the PMEC experiment, compared with the control, increased mRNA abundances of Toll-like receptor (TLR)-4 downstream target, myeloid differentiation factor 88 (MyD88), IL-6 and IL-8 were observed in LPS treatment, whereas DHA appeared to decrease mRNA abundances of MyD88, IL-6 and IL-8 induced by LPS. CONCLUSIONS: The down-regulated expression of pro-inflammatory cytokines in mammary tissues and aggravated systemic oxidative stress at parturition suggest that sows are in a vulnerable status during periparturient period. DHA appears to attenuate inflammatory responses in LPS-challenged PMEC through modulation of TLR4 signalling pathway.


Subject(s)
Docosahexaenoic Acids/pharmacology , Epithelial Cells/metabolism , Mammary Glands, Animal/physiopathology , Mastitis/physiopathology , Signal Transduction/drug effects , Swine Diseases/physiopathology , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/drug effects , Cytokines/genetics , Epithelial Cells/drug effects , Female , Gene Expression , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mastitis/drug therapy , Mastitis/metabolism , Mastitis/veterinary , Parturition , Swine , Swine Diseases/drug therapy , Swine Diseases/metabolism , Toll-Like Receptor 4
5.
Anim Sci J ; 87(3): 411-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26419503

ABSTRACT

The aim of the present study was to determine the effect of dietary lysozyme levels on growth performance, gut health and non-specific immunity of weanling piglets. A total of 150 weanling piglets were allocated to six treatments. The piglets were fed the same basel diet supplemented with 0, 30, 60, 90 and 120 mg/kg lysozyme as well as antibiotics for 28 days. From day 14 to day 28 of dietary treatment, piglets fed 90 mg/kg lysozyme had greater average daily gain than piglets fed control diet. During the whole experimental period, piglets fed 120 mg/kg lysozyme tended to have greater average daily gain than piglets fed control diet. Compared with piglets fed control diet, piglets fed diets containing antibiotics and 90 mg/kg lysozyme had greater villus height to crypt depth ratio in duodenum and jejunum. Additionally, dietary supplementation of 60 and 90 mg/kg lysozyme as well as antibiotics enhanced the phagocytic activity of peritoneal macrophages in piglets. In conclusion, dietary lysozyme can accelerate the growth of weanling piglets by improving gut health and non-specific immunity and supplementing 90 mg/kg lysozyme is as effective as antibiotics (20 mg/kg colistin sulphate + 50 mg/kg kitasamycin) in improving the growth performance of weanling piglets.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Immunity, Innate , Intestines/growth & development , Macrophages, Peritoneal/immunology , Muramidase/administration & dosage , Muramidase/analysis , Swine/growth & development , Swine/immunology , Weaning , Animals , Anti-Bacterial Agents/administration & dosage , Phagocytosis , Swine/genetics , Time Factors , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...