Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 735
Filter
1.
iScience ; 27(5): 109616, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706845

ABSTRACT

Among various electrocatalysts, high-entropy alloys (HEAs) have gained significant attention for their unique properties and excellent catalytic activity in the hydrogen evolution reaction (HER). However, the precise synthesis of HEA catalysts in small sizes remains challenging, which limits further improvement in their catalytic performance. In this study, boron- and nitrogen-doped HEA porous carbon nanofibers (HE-BN/PCNF) with an in situ-grown dendritic structure were successfully prepared, inspired by the germination and growth of tree branches. Furthermore, the dendritic fibers constrained the growth of HEA particles, leading to the synthesis of quantum dot-sized (1.67 nm) HEA particles, which also provide a pathway for designing HEA quantum dots in the future. This work provides design ideas and guiding suggestions for the preparation of borated HEA fibers with different elemental combinations and for the application of dendritic nanofibers in various fields.

2.
Pulm Circ ; 14(2): e12372, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699668

ABSTRACT

Pulmonary endarterectomy (PEA) is the standard treatment for chronic thromboembolic pulmonary hypertension. However, it poses risks of perioperative vascular complications, which can lead to serious clinical outcomes. This study introduces a novel noninvasive and radiation-free clinical imaging tool, electrical impedance tomography (EIT), for real-time bedside assessment of lung perfusion after PEA. It identifies ventilation-perfusion mismatches arising from postoperative complications, particularly valuable for patients with hemodynamic instability, thus eliminating risks tied to CT room transfers. The article reports a case where EIT was used to identify an in-situ thrombosis post-PEA, marking the first such application. The emphasis is on early detection using EIT, which offers a promising approach for therapeutic interventions and improved postoperative evaluations.

4.
J Colloid Interface Sci ; 667: 192-198, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38636221

ABSTRACT

Designing and developing cost-effective, high-performance catalysts for hydrogen evolution reaction (HER) is crucial for advancing hydrogen production technology. Tungsten-based sulfides (WSx) exhibit great potential as efficient HER catalysts, however, the activity is limited by the larger energy required for water dissociation under alkaline conditions. Herein, we adopt a top-down strategy to construct heterostructure Co-WS2 nanofiber catalysts. The experimental results and theoretical simulations unveil that the work functions-induced built-in electric field at the interface of Co-WS2 catalysts facilitates the electron transfer from Co to WS2, significantly reducing water dissociation energy and optimizing the Gibbs free energy of the entire reaction step for HER. Besides, the self-supported catalysts of Co-WS2 nanoparticles confining 1D nanofibers exhibit an increased number of active sites. As expected, the heterostructure Co-WS2 catalysts exhibit remarkable HER activity with an overpotential of 113 mV to reach 10 mA cm-2 and stability with 30 h catalyzing at 23 mA cm-2. This work can provide an avenue for designing highly efficient catalysts applicable to the field of energy storage and conversion.

5.
Clin. transl. oncol. (Print) ; 26(4): 991-1000, Abr. 2024. ilus
Article in English | IBECS | ID: ibc-VR-62

ABSTRACT

Objectives: The purpose of this meta-analysis was to investigate the relationship between serum carcinoembryonic antigen (CEA) expression and epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC). Methods: Databases such as PubMed, Cochrane, EMBASE and Google Scholar were systematically searched to identify studies assessing the association of serum CEA expression with EGFR mutations. Across 19 studies, 4168 patients were included between CEA expression and EGFR mutations odds ratio (OR) conjoint analysis of correlations. Results: Compared with CEA-negative NSCLC, CEA-positive tumors had an increased EGFR mutation rate (OR = 1.85, 95% confidence interval: 1.48–2.32, P < 0.00001). This association was observed in both stage IIIB/IV patients (OR = 1.60, 95% CI: 1.18–2.15, P = 0.002) and stage I–IIIA (OR = 1.67, 95% CI: 1.01–2.77, P = 0.05) patients. In addition, CEA expression was associated with exon 19 (OR = 1.97, 95% CI: 1.25–3.11, P = 0.003) and exon 21 (OR = 1.51, 95% CI: 1.07–2.12, P = 0.02) EGFR mutations. In ADC pathological type had also showed the correlation (OR = 1.84, 95% CI: 1.31–2.57, P = 0.0004). Conclusions: This meta-analysis indicated that serum CEA expression was associated with EGFR mutations in NSCLC patients. The results of this study suggest that CEA level may play a predictive role in the EGFR mutation status of NSCLC patients. Detecting serum CEA expression levels can give a good suggestion to those patients who are confused about whether to undergo EGFR mutation tests. Moreover, it may help better plan of the follow-up treatment.(AU)


Subject(s)
Humans , Male , Female , Biomarkers , Carcinoembryonic Antigen , Carcinoma, Non-Small-Cell Lung , Mutation , ErbB Receptors , Lung Neoplasms
6.
BMC Infect Dis ; 24(1): 409, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632536

ABSTRACT

BACKGROUND: Metagenomic next-generation sequencing (mNGS) has been increasingly applied in sepsis. We aimed to evaluate the diagnostic and therapeutic utility of mNGS of paired plasma and peritoneal drainage (PD) fluid samples in comparison to culture-based microbiological tests (CMTs) among critically ill patients with suspected acute intra-abdominal infections (IAIs). METHODS: We conducted a prospective study from October 2021 to December 2022 enrolling septic patients with suspected IAIs (n = 111). Pairwise CMTs and mNGS of plasma and PD fluid were sent for pathogen detection. The mNGS group underwent therapeutic regimen adjustment based on mNGS results for better treatment. The microbial community structure, clinical features, antibiotic use and prognoses of the patients were analyzed. RESULTS: Higher positivity rates were observed with mNGS versus CMTs for both PD fluid (90.0% vs. 48.3%, p < 0.005) and plasma (76.7% vs. 1.6%, p < 0.005). 90% of enrolled patients had clues of suspected pathogens combining mNGS and CMT methods. Gram-negative pathogens consist of most intra-abdominal pathogens, including a great variety of anaerobes represented by Bacteroides and Clostridium. Patients with matched plasma- and PD-mNGS results had higher mortality and sepsis severity. Reduced usage of carbapenem (30.0% vs. 49.4%, p < 0.05) and duration of anti-MRSA treatment (5.1 ± 3.3 vs. 7.0 ± 8.4 days, p < 0.05) was shown in the mNGS group in our study. CONCLUSIONS: Pairwise plasma and PD fluid mNGS improves microbiological diagnosis compared to CMTs for acute IAI. Combining plasma and PD mNGS could predict poor prognosis. mNGS may enable optimize empirical antibiotic use.


Subject(s)
Intraabdominal Infections , Sepsis , Humans , Prospective Studies , Drainage , High-Throughput Nucleotide Sequencing , Anti-Bacterial Agents , Sensitivity and Specificity , Retrospective Studies
7.
Clin Cardiol ; 47(4): e24269, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634453

ABSTRACT

BACKGROUND: Cancer patients are increasingly affected by chemotherapy-related cardiac dysfunction. The reported incidence of this condition vary significantly across different studies. HYPOTHESIS: A better comprehensive understanding of chemotherapy-related cardiac dysfunction incidence in cancer patients is imperative. Therefore, we performed a meta-analysis to establish the overall incidence of chemotherapy-related cardiac dysfunction in cancer patients. METHODS: We searched articles in PubMed and EMBASE from database inception to May 1, 2023. Studies that reported the incidence of chemotherapy-related cardiac dysfunction in cancer patients were included. RESULTS: A total of 53 studies involving 35 651 individuals were finally included in the meta-analysis. The overall pooled incidence of chemotherapy-related cardiac dysfunction in cancer patients was 63.21 per 1000 person-years (95% CI: 57.28-69.14). The chemotherapy-related cardiac dysfunction incidence increased steeply within half a year of cancer chemotherapy. Also, the trend of chemotherapy-related cardiac dysfunction incidence appeared to have plateaued after a longer duration of follow-up. In addition, chemotherapy-related cardiac dysfunction incidence rates are significantly higher among patients with age ≥50 years versus patients with age <50 years (99.96 vs. 34.48 per 1000 person-years). The incidence rate of cardiac dysfunction was higher among breast cancer patients (72.97 per 1000 person-years), leukemia patients (65.21 per 1000 person-years), and lymphoma patients (55.43 per 1000 person-years). CONCLUSION: Our meta-analysis unveiled a definitive overall incidence rate of chemotherapy-related cardiac dysfunction in cancer patients. In addition, it was found that the risk of developing this condition escalates within the initial 6 months postchemotherapy, subsequently tapering off to become statistically insignificant after a duration of 6 years.


Subject(s)
Breast Neoplasms , Heart Diseases , Humans , Middle Aged , Female , Incidence
8.
Cell Death Dis ; 15(4): 244, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575607

ABSTRACT

The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.


Subject(s)
Interleukin-18 , Pancreatic Neoplasms , Humans , Glycosylation , Interleukin-18/metabolism , Pancreatic Neoplasms/pathology , Proteins/metabolism , Biosynthetic Pathways , Hexosamines , Tumor Microenvironment , Y-Box-Binding Protein 1/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics
9.
J Nanobiotechnology ; 22(1): 129, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528554

ABSTRACT

The development of nanomaterials for delivering natural compounds has emerged as a promising approach for atherosclerosis therapy. However, premature drug release remains a challenge. Here, we present a ROS-responsive biomimetic nanocomplex co-loaded with Geniposide (GP) and Emodin (EM) in nanoliposome particles (LP NPs) for targeted atherosclerosis therapy. The nanocomplex, hybridized with the macrophage membrane (Møm), effectively evades immune system clearance and targets atherosclerotic plaques. A modified thioketal (TK) system responds to ROS-rich plaque regions, triggering controlled drug release. In vitro, the nanocomplex inhibits endothelial cell apoptosis and macrophage lipid accumulation, restores endothelial cell function, and promotes cholesterol effluxion. In vivo, it targets ROS-rich atherosclerotic plaques, reducing plaque area ROS levels and restoring endothelial cell function, consequently promoting cholesterol outflow. Our study demonstrates that ROS-responsive biomimetic nanocomplexes co-delivering GP and EM exert a synergistic effect against endothelial cell apoptosis and lipid deposition in macrophages, offering a promising dual-cell therapy modality for atherosclerosis regression.


Subject(s)
Atherosclerosis , Emodin , Iridoids , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/drug therapy , Liposomes/therapeutic use , Reactive Oxygen Species/metabolism , Emodin/pharmacology , Emodin/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Cholesterol
10.
J Thorac Dis ; 16(2): 979-988, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38505046

ABSTRACT

Background: Esophageal pressure (Pes) has been used as a surrogate of pleural pressure (Ppl) to titrate positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS) patients. The relationship between Pes and PEEP remains undetermined. Methods: A gastric tube with a balloon catheter was inserted to monitor Pes in moderate to severe ARDS patients who underwent invasive mechanical ventilation. To assess the end-expiratory Pes response (ΔPes) to PEEP changes (ΔPEEP), the PEEP level was decreased and increased subsequently (with an average change of 3 cmH2O). The patients underwent the following two series of PEEP adjustment: (I) from PEEP-3 cmH2O to PEEPbaseline; and (II) from PEEPbaseline to PEEP+3 cmH2O. The patients were classified as "PEEP-dependent type" if they had ΔPes ≥30% ΔPEEP and were otherwise classified as "PEEP-independent type" (ΔPes <30% ΔPEEP in any series). Results: In total, 54 series of PEEP adjustments were performed in 18 ARDS patients. Of these patients, 12 were classified as PEEP-dependent type, and six were classified as PEEP-independent type. During the PEEP adjustment, end-expiratory Pes changed significantly in the PEEP-dependent patients, who had a Pes of 10.8 (7.9, 12.3), 12.5 (10.5, 14.9), and 14.5 (13.1, 18.3) cmH2O at PEEP-3 cmH2O, PEEPbaseline, and PEEP+3 cmH2O, respectively (median and quartiles; P<0.0001), while end-expiratory transpulmonary pressure (PL) was maintained at an optimal range [-0.1 (-0.7, 0.4), 0.1 (-0.6, 0.5), and 0.3 (-0.3, 0.7) cmH2O, respectively]. In the PEEP-independent patients, the Pes remained unchanged, with a Pes of 15.4 (11.4, 17.8), 15.5 (11.6, 17.8), and 15.4 (11.7, 18.30) cmH2O at each of the three PEEP levels, respectively. Meanwhile, end-expiratory PL significantly improved [from -5.5 (-8.5, -3.4) at PEEP-3 cmH2O to -2.5 (-5.0, -1.6) at PEEPbaseline to -0.5 (-1.8, 0.3) at PEEP+3 cmH2O; P<0.01]. Conclusions: Two types of Pes phenotypes were identified according to the ΔPes to ΔPEEP. The underlying mechanisms and implications for clinical practice require further exploration.

12.
Mol Immunol ; 168: 64-74, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428216

ABSTRACT

Septic lung injury is characterized by uncontrollable inflammatory infiltrations and acute onset bilateral hypoxemia. Evidence has emerged of the beneficial effect of hydrogen in acute lung injury (ALI), but the underlying mechanism is unclear. In this research, the recovery action of hydrogen on lipopolysaccharide (LPS)-induced ALI in mice and A549 cells was investigated. The 7-day survival rate and body weight of mice were measured after intraperitoneal injection of LPS. Lung function was determined by a whole body plethysmography (WBP) system using the indicators respiratory rate and enhanced pause. Hematoxylin and eosin (HE) staining confirmed the signs of pulmonary edema and inflammatory ooze. Reverse transcription-polymerase chain reaction (RT-PCR) quantification was used to detect the expression of inflammatory factors. Western blotting analysis evaluated the expression levels of involved proteins in the AMP-activated protein kinase (AMPK) pathway. The experimental results confirmed that hydrogen provided an essential solution to the dissipative effects of LPS on survival rate, weight loss and lung function. The LPS-stimulated inflammatory factors, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were also suppressed by hydrogen in A549 cells. Western blot analysis showed that hydrogen significantly upregulated the levels of phosphorylated AMPK (p-AMPK) and lowered the LPS-induced increased expression of dynamin-related protein 1 (Drp1) and Caspase3. These findings prove that hydrogen attenuated LPS-treated ALI by activating the AMPK pathway, supporting the feasibility of hydrogen treatment for sepsis.


Subject(s)
Acute Lung Injury , Endotoxins , Animals , Mice , Endotoxins/metabolism , Lipopolysaccharides/metabolism , AMP-Activated Protein Kinases/metabolism , Hydrogen/adverse effects , Hydrogen/metabolism , Signal Transduction , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Free Radic Biol Med ; 218: 132-148, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554812

ABSTRACT

Acute respiratory distress syndrome (ARDS) is an acute and severe clinical complication lacking effective therapeutic interventions. The disruption of the lung epithelial barrier plays a crucial role in ARDS pathogenesis. Recent studies have proposed the involvement of abnormal mitochondrial dynamics mediated by dynamin-related protein 1 (Drp1) in the mechanism of impaired epithelial barrier in ARDS. Hydrogen is an anti-oxidative stress molecule that regulates mitochondrial function via multiple signaling pathways. Our previous study confirmed that hydrogen modulated oxidative stress and attenuated acute pulmonary edema in ARDS by upregulating thioredoxin 1 (Trx1) expression, but the exact mechanism remains unclear. This study aimed to investigate the effects of hydrogen on mitochondrial dynamics both in vivo and in vitro. Our study revealed that hydrogen inhibited lipopolysaccharide (LPS)-induced phosphorylation of Drp1 (at Ser616), suppressed Drp1-mediated mitochondrial fission, alleviated epithelial tight junction damage and cell apoptosis, and improved the integrity of the epithelial barrier. This process was associated with the upregulation of Trx1 in lung epithelial tissues of ARDS mice by hydrogen. In addition, hydrogen treatment reduced the production of reactive oxygen species in LPS-induced airway epithelial cells (AECs) and increased the mitochondrial membrane potential, indicating that the mitochondrial dysfunction was restored. Then, the expression of tight junction proteins occludin and zonula occludens 1 was upregulated, and apoptosis in AECs was alleviated. Remarkably, the protective effects of hydrogen on the mitochondrial and epithelial barrier were eliminated after applying the Trx1 inhibitor PX-12. The results showed that hydrogen significantly inhibited the cell apoptosis and the disruption of epithelial tight junctions, maintaining the integrity of the epithelial barrier in mice of ARDS. This might be related to the inhibition of Drp1-mediated mitochondrial fission through the Trx1 pathway. The findings of this study provided a new theoretical basis for the application of hydrogen in the clinical treatment of ARDS.


Subject(s)
Dynamins , Hydrogen , Lipopolysaccharides , Mitochondrial Dynamics , Respiratory Distress Syndrome , Thioredoxins , Animals , Thioredoxins/metabolism , Thioredoxins/genetics , Mitochondrial Dynamics/drug effects , Dynamins/metabolism , Dynamins/genetics , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/pathology , Mice , Humans , Hydrogen/pharmacology , Lipopolysaccharides/toxicity , Lung/pathology , Lung/metabolism , Lung/drug effects , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Male , Apoptosis/drug effects , Oxidative Stress/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Disease Models, Animal , Tight Junctions/metabolism , Tight Junctions/drug effects , Tight Junctions/pathology , Mice, Inbred C57BL , Phosphorylation/drug effects
14.
Shock ; 61(4): 570-576, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38411593

ABSTRACT

ABSTRACT: Background: Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. There is currently no simple immune-imbalance-driven indicator for patients with sepsis. Methods: This study was conducted in Peking Union Medical College Hospital. Patients with sepsis were identified according to Sepsis 3.0 after reviewing patient data from May 2018 through October 2022. Least absolute shrinkage and selection operator logistic regression was used for features selection. Receiver operating characteristic curves for 28-day mortality were used to compare the predictive performance of level of interleukin 6 (IL-6) and lymphocyte count (LY#) with that of the combined ratio, namely, the IL-6/LY# ratio. A Cox hazard model was also used to test the predictive performance of IL-6/LY# versus several other measurements. The dynamic trend of IL-6/LY# based on day 1 IL-6/LY# level was analyzed. Results: The mortality rate was 24.5% (220/898) in the study cohort. The LY#, IL-6 level, blood platelet count, Sequential Organ Failure Assessment score, Acute Physiology and Chronic Health Evaluation II score, heart rate, age and Fi o2 level were identified as key factors for predicting 28-day mortality. IL-6/LY# was identified as a core indicator according to Least absolute shrinkage and selection operator logistic regression analysis. IL-6/LY# was significantly higher in nonsurvivors than in survivors (348 [154.6-1371.7] vs. 42.3 [15.4-117.1]). IL-6/LY# yielded a higher area under the curve (0.852 [95% CI = 0.820-0.879]) than the level of IL-6 (0.776 [95% CI = 0.738-0.809]) and LY# (0.719 [95% CI = 0.677-0.755]) separately. Survival analysis of mortality risk versus the IL-6/LY# ratio suggested that IL-6/LY# was significantly more predictive of patient risk than the Sequential Organ Failure Assessment score or the other factors ( P = 1.5 × 10 -33 ). In trend analysis, as the trend of D1-D3-D7 IL-6/LY# decreases, the morality rate is lower than increase or fluctuate group (42.1% vs. 58.3%, 37.9% vs. 43.8%, 37.5% vs. 38.5% in high, moderate, and low D1 IL-6/LY# group separately). Conclusion: IL-6/LY# examined on first day in intensive care unit can be used as an immune-imbalance alert to identify sepsis patients with higher risk of 28-day mortality. Decreasing trend of IL-6/LY# suggests a lower 28-day mortality rate of sepsis patients.


Subject(s)
Interleukin-6 , Sepsis , Humans , Retrospective Studies , Prognosis , Critical Care , ROC Curve , Intensive Care Units
15.
Nanomaterials (Basel) ; 14(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38392734

ABSTRACT

Herein, the preparation process, morphology, structure, and magnetic properties of La1.85Sr0.15CuO4 (LSCO) cobweb-like nanofibers are reported. LSCO nanofibers with a regular grain size distribution are successfully prepared via electrospinning, followed by calcination. We conducted morphology analysis and elemental distribution using electron microscopy and energy-dispersive X-ray spectroscopy (EDS), respectively. Additionally, magnetic property testing was performed using a vibrating sample magnetometer (VSM) to confirm the superconducting properties of the samples. Interestingly, our samples exhibited a superconducting transition temperature, Tc, of 25.21 K, which showed some disparity compared to similar works. Furthermore, we observed a ferromagnetic response at low temperatures in the superconducting nanofibers. We attribute these phenomena to the effects generated by surface states of nanoscale superconducting materials.

16.
Heliyon ; 10(3): e25214, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38318035

ABSTRACT

African Swine Fever (ASF), caused by the African swine fever virus (ASFV), has inflicted significant economic losses on the pig industry in China. The key to mitigating its impact lies in accurate screening and strict biosecurity measures. In this regard, the development of colloidal gold immunochromatographic test strips (CGITS) has proven to be an effective method for detecting ASFV antibodies. These test strips are based on the ASFV p30 recombinant protein and corresponding monoclonal antibodies. The design of the test strip incorporates a high-concentration colloidal gold-labeled p30 recombinant protein as the detection sensor, utilizing Staphylococcal Protein A (SPA) as the test line (T line), and p30 monoclonal antibody as the control line (C line). The sensitivity and specificity of the test strip were evaluated after optimizing the labeling concentration, pH, and protein dosage. The research findings revealed that the optimal colloidal gold labeling concentration was 0.05 %, the optimal pH was 8.4, and the optimal protein dosage was 10 µg/mL. Under these conditions, the CGITS demonstrated a detection limit of 1:512 dilution of ASFV standard positive serum, without exhibiting cross-reactivity with antibodies against other viral pathogens. Furthermore, the test strips remained stable for up to 20 days when stored at 50 °C and 4 °C. Comparatively, the CGITS outperformed commercial ELISA kits, displaying a sensitivity of 90.9 % and a specificity of 96.2 %. Subsequently, 108 clinical sera were tested to assess its performance. The data showed that the coincidence rate between the CGITS and ELISA was 93.5 %. In conclusion, the rapid colloidal gold test strip provides an efficient and reliable screening tool for on-site clinical detection of ASF in China. Its accuracy, stability, and simplicity make it a valuable asset in combating the spread of ASF and limiting its impact on the pig industry.

17.
BMC Anesthesiol ; 24(1): 55, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321423

ABSTRACT

BACKGROUND: Setting positive end-expiratory pressure (PEEP) at around 5 cm H2O in the early postoperative period seems a common practice for most patients. It remains unclear if the routine application of higher levels of PEEP confers any meaningful clinical benefit for cardiac surgical patients. The aim of this study was to compare moderate versus conventional lower PEEP on patient-centered outcomes in the intensive care unit (ICU). METHODS: This is a single-center retrospective study involving patients receiving cardiac surgery from June 2022 to May 2023. Propensity-score matching (PSM) was used to balance the baseline differences. Primary outcomes were the duration of mechanical ventilation and ICU length of stay. Secondary outcomes included PaO2/FiO2 ratio at 24 h and the need for prone positioning during ICU stay. RESULTS: A total of 334 patients were included in the study, 102 (31%) of them received moderate PEEP (≥ 7 cm H2O) for the major time in the early postoperative period (12 h). After PSM, 79 pairs of patients were matched with balanced baseline data. The results showed that there was marginal difference in the distribution of mechanical ventilation duration (p = 0.05) and the Moderate PEEP group had a higher extubation rate at the day of T-piece trial (65 [82.3%] vs 52 [65.8%], p = 0.029). Applying moderate PEEP was also associated with better oxygenation. No differences were found regarding ICU length of stay and patients requiring prone positioning between groups. CONCLUSION: In selective cardiac surgical patients, using moderate PEEP compared with conventional lower PEEP in the early postoperative period correlated to better oxygenation, which may have potential for earlier liberation of mechanical ventilation.


Subject(s)
Cardiac Surgical Procedures , Respiration, Artificial , Humans , Retrospective Studies , Respiration, Artificial/methods , Positive-Pressure Respiration/methods , Lung
18.
J Clin Med ; 13(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38337562

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is the etiology of acute respiratory distress syndrome (ARDS). Extracorporeal membrane oxygenation (ECMO) is used to support gas exchange in patients who have failed conventional mechanical ventilation. However, there is no clear consensus on the timing of ECMO use in severe COVID-19 patients. OBJECTIVE: The aim of this study is to compare the differences in pre-ECMO time and ECMO duration between COVID-19 survivors and non-survivors and to explore the association between them. METHODS: PubMed, the Cochrane Library, Embase, and other sources were searched until 21 October 2022. Studies reporting the relationship between ECMO-related time and COVID-19 survival were included. All available data were pooled using random-effects methods. Linear regression analysis was used to determine the correlation between pre-ECMO time and ECMO duration. The meta-analysis was registered with PROSPERO under registration number CRD42023403236. RESULTS: Out of the initial 2473 citations, we analyzed 318 full-text articles, and 54 studies were included, involving 13,691 patients. There were significant differences between survivors and non-survivors in the time from COVID-19 diagnosis (standardized mean difference (SMD) = -0.41, 95% confidence interval (CI): [-0.53, -0.29], p < 0.00001), hospital (SMD = -0.53, 95% CI: [-0.97, -0.09], p = 0.02) and intensive care unit (ICU) admission (SMD = -0.28, 95% CI: [-0.49, -0.08], p = 0.007), intubation or mechanical ventilation to ECMO (SMD = -0.21, 95% CI: [-0.32, -0.09], p = 0.0003) and ECMO duration (SMD = -0.18, 95% CI: [-0.30, -0.06], p = 0.003). There was no statistical association between a longer time from symptom onset to ECMO (hazard ratio (HR) = 1.05, 95% CI: [0.99, 1.12], p = 0.11) or time from intubation or mechanical ventilation (MV) and the risk of mortality (highest vs. lowest time groups odds ratio (OR) = 1.18, 95% CI: [0.78, 1.78], p = 0.42; per one-day increase OR = 1.14, 95% CI: [0.86, 1.52], p = 0.36; HR = 0.99, 95% CI: [0.95, 1.02], p = 0.39). There was no linear relationship between pre-ECMO time and ECMO duration. CONCLUSION: There are differences in pre-ECMO time between COVID-19 survivors and non-survivors, and there is insufficient evidence to conclude that longer pre-ECMO time is responsible for reduced survival in COVID-19 patients. ECMO duration differed between survivors and non-survivors, and the timing of pre-ECMO does not have an impact on ECMO duration. Further studies are needed to explore the association between pre-ECMO and ECMO time in the survival of COVID-19 patients.

19.
Phytomedicine ; 126: 155073, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417244

ABSTRACT

BACKGROUND: Cervical spondylotic myelopathy (CSM) is a degenerative pathology that affects both upper and lower extremity mobility and sensory function, causing significant pressure on patients and society. Prior research has suggested that ginsenosides may have neuroprotective properties in central nervous system diseases. However, the efficacy and mechanism of ginsenosides for CSM have yet to be investigated. PURPOSE: This study aims to analyze the composition of ginsenosides using UPLC-MS, identify the underlying mechanism of ginsenosides in treating CSM using network pharmacology, and subsequently confirm the efficacy and mechanism of ginsenosides in rats with chronic spinal cord compression. METHODS: UPLC-Q-TOF-MS was utilized to obtain mass spectrum data of ginsenoside samples. The chemical constituents of the samples were analyzed by consulting literature reports and relevant databases. Ginsenoside and CSM targets were obtained from the TCMSP, OMIM, and GeneCards databases. GO and KEGG analyses were conducted, and a visualization network of ginsenosides-compounds-key targets-pathways-CSM was constructed, along with molecular docking of key bioactive compounds and targets, to identify the signaling pathways and proteins associated with the therapeutic effects of ginsenosides on CSM. Chronic spinal cord compression rats were intraperitoneally injected with ginsenosides (50 mg/kg and 150 mg/kg) and methylprednisolone for 28 days, and motor function was assessed to investigate the therapeutic efficacy of ginsenosides for CSM. The expression of proteins associated with TNF, IL-17, TLR4/MyD88/NF-κB, and NLRP3 signaling pathways was assessed by immunofluorescence staining and western blotting. RESULTS: Using UPLC-Q-TOF-MS, 37 compounds were identified from ginsenoside samples. Furthermore, ginsenosides-compounds-key targets-pathways-CSM visualization network indicated that ginsenosides may modulate the PI3K-Akt signaling pathway, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway and Apoptosis by targeting AKT1, TNF, MAPK1, CASP3, IL6, and IL1B, exerting a therapeutic effect on CSM. By attenuating neuroinflammation through the TNF, IL-17, TLR4/MyD88/NF-κB, and MAPK signaling pathways, ginsenosides restored the motor function of rats with CSM, and ginsenosides 150 mg/kg showed better effect. This was achieved by reducing the phosphorylation of NF-κB and the activation of the NLRP3 inflammasome. CONCLUSIONS: The results of network pharmacology indicate that ginsenosides can inhibit neuroinflammation resulting from spinal cord compression through multiple pathways and targets. This finding was validated through in vivo tests, which demonstrated that ginsenosides can reduce neuroinflammation by inhibiting NLRP3 inflammasomes via multiple signaling pathways, additionally, it should be noted that 150 mg/kg was a relatively superior dose. This study is the first to verify the intrinsic molecular mechanism of ginsenosides in treating CSM by combining pharmacokinetics, network pharmacology, and animal experiments. The findings can provide evidence for subsequent clinical research and drug development.


Subject(s)
Animal Experimentation , Drugs, Chinese Herbal , Ginsenosides , Spinal Cord Compression , Spinal Cord Diseases , Humans , Animals , Rats , Ginsenosides/pharmacology , Interleukin-17 , NLR Family, Pyrin Domain-Containing 3 Protein , NF-kappa B , Chromatography, Liquid , Molecular Docking Simulation , Myeloid Differentiation Factor 88 , Network Pharmacology , Neuroinflammatory Diseases , Phosphatidylinositol 3-Kinases , Toll-Like Receptor 4 , Tandem Mass Spectrometry , Drugs, Chinese Herbal/pharmacology
20.
BMJ Open ; 14(2): e080828, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38307528

ABSTRACT

INTRODUCTION: Previous studies suggested that electrical impedance tomography (EIT) has the potential to guide positive end-expiratory pressure (PEEP) titration via quantifying the alveolar collapse and overdistension. The aim of this trial is to compare the effect of EIT-guided PEEP and acute respiratory distress syndrome (ARDS) network low PEEP/fraction of inspired oxygen (FiO2) table strategy on mortality and other clinical outcomes in patients with ARDS. METHODS: This is a parallel, two-arm, multicentre, randomised, controlled trial, conducted in China. All patients with ARDS under mechanical ventilation admitted to the intensive care unit will be screened for eligibility. The enrolled patients are stratified by the aetiology (pulmonary/extrapulmonary) and partial pressure of arterial oxygen/FiO2 (≥150 mm Hg or <150 mm Hg) and randomised into the intervention group or the control group. The intervention group will receive recruitment manoeuvre and EIT-guided PEEP titration. The EIT-guided PEEP will be set for at least 12 hours after titration. The control group will not receive recruitment manoeuvre routinely and the PEEP will be set according to the lower PEEP/FiO2 table proposed by the ARDS Network. The primary outcome is 28-day survival. ANALYSIS: Qualitative data will be analysed using the χ2 test or Fisher's exact test, quantitative data will be analysed using independent samples t-test or Mann-Whitney U test. Kaplan-Meier analysis with log-rank test will be used to evaluate the 28-day survival rate between two groups. All outcomes will be analysed based on the intention-to-treat principle. ETHICS AND DISSEMINATION: The trial is approved by the Institutional Research and Ethics Committee of the Peking Union Medical College Hospital. Data will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT05307913.


Subject(s)
Respiratory Distress Syndrome , Humans , Electric Impedance , Prognosis , Respiratory Distress Syndrome/therapy , Tomography , Oxygen , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...