Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(14): 142502, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38640383

ABSTRACT

A precision measurement of the ß^{+} decay of ^{8}B was performed using the Beta-decay Paul Trap to determine the ß-ν angular correlation coefficient a_{ßν}. The experimental results were combined with new ab initio symmetry-adapted no-core shell-model calculations to yield the second-most precise measurement from Gamow-Teller decays, a_{ßν}=-0.3345±0.0019_{stat}±0.0021_{syst}. This value agrees with the standard model value of -1/3 and improves uncertainties in ^{8}B by nearly a factor of 2. By combining results from ^{8}B and ^{8}Li, a tight limit on tensor current coupling to right-handed neutrinos was obtained. A recent global evaluation of all other precision ß decay studies suggested a nonzero value for right-handed neutrino coupling in contradiction with the standard model at just above 3σ. The present results are of comparable sensitivity and do not support this finding.

2.
Phys Rev Lett ; 132(15): 152503, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682970

ABSTRACT

The first complete measurement of the ß-decay strength distribution of _{17}^{45}Cl_{28} was performed at the Facility for Rare Isotope Beams (FRIB) with the FRIB Decay Station Initiator during the second FRIB experiment. The measurement involved the detection of neutrons and γ rays in two focal planes of the FRIB Decay Station Initiator in a single experiment for the first time. This enabled an analytical consistency in extracting the ß-decay strength distribution over the large range of excitation energies, including neutron unbound states. We observe a rapid increase in the ß-decay strength distribution above the neutron separation energy in _{18}^{45}Ar_{27}. This was interpreted to be caused by the transitioning of neutrons into protons excited across the Z=20 shell gap. The SDPF-MU interaction with reduced shell gap best reproduced the data. The measurement demonstrates a new approach that is sensitive to the proton shell gap in neutron rich nuclei according to SDPF-MU calculations.

3.
Phys Rev Lett ; 130(24): 242501, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37390416

ABSTRACT

Excited-state spectroscopy from the first experiment at the Facility for Rare Isotope Beams (FRIB) is reported. A 24(2)-µs isomer was observed with the FRIB Decay Station initiator (FDSi) through a cascade of 224- and 401-keV γ rays in coincidence with ^{32}Na nuclei. This is the only known microsecond isomer (1 µs≤T_{1/2}<1 ms) in the region. This nucleus is at the heart of the N=20 island of shape inversion and is at the crossroads of the spherical shell-model, deformed shell-model, and ab initio theories. It can be represented as the coupling of a proton hole and neutron particle to ^{32}Mg, ^{32}Mg+π^{-1}+ν^{+1}. This odd-odd coupling and isomer formation provides a sensitive measure of the underlying shape degrees of freedom of ^{32}Mg, where the onset of spherical-to-deformed shape inversion begins with a low-lying deformed 2^{+} state at 885 keV and a low-lying shape-coexisting 0_{2}^{+} state at 1058 keV. We suggest two possible explanations for the 625-keV isomer in ^{32}Na: a 6^{-} spherical shape isomer that decays by E2 or a 0^{+} deformed spin isomer that decays by M2. The present results and calculations are most consistent with the latter, indicating that the low-lying states are dominated by deformation.


Subject(s)
Cell Nucleus , Heart , Isotopes , Neutrons
4.
Phys Rev Lett ; 130(19): 192502, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37243659

ABSTRACT

We present the first measurement of the α-ß-ν angular correlation in the Gamow-Teller ß^{+} decay of ^{8}B. This was accomplished using the Beta-decay Paul Trap, expanding on our previous work on the ß^{-} decay of ^{8}Li. The ^{8}B result is consistent with the V-A electroweak interaction of the standard model and, on its own, provides a limit on the exotic right-handed tensor current relative to the axial-vector current of |C_{T}/C_{A}|^{2}<0.013 at the 95.5% confidence level. This represents the first high-precision angular correlation measurements in mirror decays and was made possible through the use of an ion trap. By combining this ^{8}B result with our previous ^{8}Li results, we demonstrate a new pathway for increased precision in searches for exotic currents.

5.
Phys Rev Lett ; 129(21): 212501, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36461950

ABSTRACT

New half-lives for exotic isotopes approaching the neutron drip-line in the vicinity of N∼28 for Z=12-15 were measured at the Facility for Rare Isotope Beams (FRIB) with the FRIB decay station initiator. The first experimental results are compared to the latest quasiparticle random phase approximation and shell-model calculations. Overall, the measured half-lives are consistent with the available theoretical descriptions and suggest a well-developed region of deformation below ^{48}Ca in the N=28 isotones. The erosion of the Z=14 subshell closure in Si is experimentally confirmed at N=28, and a reduction in the ^{38}Mg half-life is observed as compared with its isotopic neighbors, which does not seem to be predicted well based on the decay energy and deformation trends. This highlights the need for both additional data in this very exotic region, and for more advanced theoretical efforts.

6.
Phys Rev Lett ; 129(24): 242501, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36563248

ABSTRACT

A novel pathway for the formation of multiparticle-multihole excited states in rare isotopes is reported from highly energy- and momentum-dissipative inelastic-scattering events measured in reactions of an intermediate-energy beam of ^{38}Ca on a Be target. The negative-parity, complex-structure final states in ^{38}Ca are observed following the in-beam γ-ray spectroscopy of events in the ^{9}Be(^{38}Ca,^{38}Ca+γ)X reaction in which the scattered projectile loses longitudinal momentum of order Δp_{||}=700 MeV/c. The characteristics of the observed final states are discussed and found to be consistent with the formation of excited states involving the rearrangement of multiple nucleons in a single, highly energetic projectile-target collision. Unlike the far-less-dissipative, surface-grazing reactions usually exploited for the in-beam γ-ray spectroscopy of rare isotopes, these more energetic collisions appear to offer a practical pathway to nuclear-structure studies of more complex multiparticle configurations in rare isotopes-final states conventionally thought to be out of reach with high-luminosity fast-beam-induced reactions.

7.
Phys Rev Lett ; 128(20): 202502, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35657880

ABSTRACT

The electroweak interaction in the standard model is described by a pure vector-axial-vector structure, though any Lorentz-invariant component could contribute. In this Letter, we present the most precise measurement of tensor currents in the low-energy regime by examining the ß-ν[over ¯] correlation of trapped ^{8}Li ions with the Beta-decay Paul Trap. We find a_{ßν}=-0.3325±0.0013_{stat}±0.0019_{syst} at 1σ for the case of coupling to right-handed neutrinos (C_{T}=-C_{T}^{'}), which is consistent with the standard model prediction.

8.
Phys Rev Lett ; 128(20): 202503, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35657888

ABSTRACT

We place unprecedented constraints on recoil corrections in the ß decay of ^{8}Li, by identifying a strong correlation between them and the ^{8}Li ground state quadrupole moment in large-scale ab initio calculations. The results are essential for improving the sensitivity of high-precision experiments that probe the weak interaction theory and test physics beyond the standard model. In addition, our calculations predict a 2^{+} state of the α+α system that is energetically accessible to ß decay but has not been observed in the experimental ^{8}Be energy spectrum, and has an important effect on the recoil corrections and ß decay for the A=8 systems. This state and an associated 0^{+} state are notoriously difficult to model due to their cluster structure and collective correlations, but become feasible for calculations in the ab initio symmetry-adapted no-core shell-model framework.

9.
Phys Rev Lett ; 126(15): 152701, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33929230

ABSTRACT

The discrepancy between observations from γ-ray astronomy of the ^{60}Fe/^{26}Al γ-ray flux ratio and recent calculations is an unresolved puzzle in nuclear astrophysics. The stellar ß-decay rate of ^{59}Fe is one of the major nuclear uncertainties impeding us from a precise prediction. The important Gamow-Teller strengths from the low-lying states in ^{59}Fe to the ^{59}Co ground state are measured for the first time using the exclusive measurement of the ^{59}Co(t,^{3}He+γ)^{59}Fe charge-exchange reaction. The new stellar decay rate of ^{59}Fe is a factor of 3.5±1.1 larger than the currently adopted rate at T=1.2 GK. Stellar evolution calculations show that the ^{60}Fe production yield of an 18 solar mass star is decreased significantly by 40% when using the new rate. Our result eliminates one of the major nuclear uncertainties in the predicted yield of ^{60}Fe and alleviates the existing discrepancy of the ^{60}Fe/^{26}Al ratio.

10.
Phys Rev Lett ; 126(4): 042701, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33576674

ABSTRACT

Proton capture on the excited isomeric state of ^{26}Al strongly influences the abundance of ^{26}Mg ejected in explosive astronomical events and, as such, plays a critical role in determining the initial content of radiogenic ^{26}Al in presolar grains. This reaction also affects the temperature range for thermal equilibrium between the ground and isomeric levels. We present a novel technique, which exploits the isospin symmetry of the nuclear force, to address the long-standing challenge of determining proton-capture rates on excited nuclear levels. Such a technique has in-built tests that strongly support its veracity and, for the first time, we have experimentally constrained the strengths of resonances that dominate the astrophysical ^{26m}Al(p,γ)^{27}Si reaction. These constraints demonstrate that the rate is at least a factor ∼8 lower than previously expected, indicating an increase in the stellar production of ^{26}Mg and a possible need to reinvestigate sensitivity studies involving the thermal equilibration of ^{26}Al.

11.
Phys Rev Lett ; 125(23): 232501, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33337204

ABSTRACT

The neutron-rich nuclei in the N=28 island of inversion have attracted considerable experimental and theoretical attention, providing great insight into the evolution of shell structure and nuclear shape in exotic nuclei. In this work, for the first time, quadrupole collectivity is assessed simultaneously on top of the 3/2^{-} ground state and the 7/2^{-} shape-coexisting isomer of ^{43}S, putting the unique interpretation of shape and configuration coexistence at N=27 and 28 in the sulfur isotopic chain to the test. From an analysis of the electromagnetic transition strengths and quadrupole moments predicted within the shell model, it is shown that the onset of shape coexistence and the emergence of a simple collective structure appear suddenly in ^{43}S with no indication of such patterns in the N=27 isotone ^{45}Ar.

12.
Phys Rev Lett ; 124(15): 152501, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32357059

ABSTRACT

The lifetimes of the first excited 2^{+} states in the N=Z nuclei ^{80}Zr, ^{78}Y, and ^{76}Sr have been measured using the γ-ray line shape method following population via nucleon-knockout reactions from intermediate-energy rare-isotope beams. The extracted reduced electromagnetic transition strengths yield new information on where the collectivity is maximized and provide evidence for a significant, and as yet unexplained, odd-odd vs even-even staggering in the observed values. The experimental results are analyzed in the context of state-of-the-art nuclear density-functional model calculations.

13.
Phys Rev Lett ; 122(23): 232701, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31298878

ABSTRACT

The ^{23}Al(p,γ)^{24}Si reaction is among the most important reactions driving the energy generation in type-I x-ray bursts. However, the present reaction-rate uncertainty limits constraints on neutron star properties that can be achieved with burst model-observation comparisons. Here, we present a novel technique for constraining this important reaction by combining the GRETINA array with the neutron detector LENDA coupled to the S800 spectrograph at the National Superconducting Cyclotron Laboratory. The ^{23}Al(d,n) reaction was used to populate the astrophysically important states in ^{24}Si. This enables a measurement in complete kinematics for extracting all relevant inputs necessary to calculate the reaction rate. For the first time, a predicted close-lying doublet of a 2_{2}^{+} and (4_{1}^{+},0_{2}^{+}) state in ^{24}Si was disentangled, finally resolving conflicting results from two previous measurements. Moreover, it was possible to extract spectroscopic factors using GRETINA and LENDA simultaneously. This new technique may be used to constrain other important reaction rates for various astrophysical scenarios.

14.
Phys Rev Lett ; 122(22): 222501, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31283300

ABSTRACT

A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus ^{42}Si-going beyond earlier comparisons of excited-state energies-is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying ^{42}Si(2_{1}^{+}) energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich ^{42}Si with a one-proton removal reaction from ^{43}P projectiles at 81 MeV/nucleon. The measured cross sections to the individual ^{42}Si final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0^{+} states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13) keV in ^{42}Si is proposed to be the (0_{2}^{+}) level.

15.
Phys Rev Lett ; 121(8): 082502, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30192612

ABSTRACT

Neutron-deficient selenium isotopes are thought to undergo a rapid shape change from a prolate deformation near the line of beta stability towards oblate deformation around the line of N=Z. The point at which this shape change occurs is unknown, with inconsistent predictions from available theoretical models. A common feature in the models is the delicate nature of the point of transition, with the introduction of even a modest spin to the system sufficient to change the ordering of the prolate and oblate configurations. We present a measurement of the quadrupole moment of the first-excited state in radioactive ^{72}Se-a potential point of transition-by safe Coulomb excitation. This is the first low-energy Coulomb excitation to be performed with a rare-isotope beam at the reaccelerated beam facility at the National Superconducting Cyclotron Laboratory. By demonstrating a negative spectroscopic quadrupole moment for the first-excited 2^{+} state, it is found that any low-spin shape change in neutron-deficient selenium does not occur until ^{70}Se.

16.
Phys Rev Lett ; 121(1): 012501, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-30028163

ABSTRACT

Lifetime measurements of excited states in the neutron-rich nucleus ^{43}S were performed by applying the recoil-distance method on fast rare-isotope beams in conjunction with the Gamma-Ray Energy Tracking In-beam Nuclear Array. The new data based on γγ coincidences and lifetime measurements resolve a doublet of (3/2^{-}) and (5/2^{-}) states at low excitation energies. Results were compared to the π(sd)-ν(pf) shell model and antisymmetrized molecular dynamics calculations. The consistency with the theoretical calculations identifies a possible appearance of three coexisting bands near the ground state of ^{43}S: the K^{π}=1/2^{-} band built on a prolate-deformed ground state, a band built on an isomer with a 1f_{7/2}^{-1} character, and a suggested excited band built on a newly discovered doublet state. The latter further confirms the collapse of the N=28 shell closure in the neutron-rich region.

17.
Phys Rev Lett ; 121(26): 262501, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30636164

ABSTRACT

An enhanced low-energy electric dipole (E1) strength is identified for the weakly bound excited states of the neutron-rich isotope ^{27}Ne. The Doppler-shift lifetime measurements employing a combination of the γ-ray tracking array GRETINA, the plunger device, and the S800 spectrograph determine the lower limit of 0.030 e^{2} fm^{2} or 0.052 W.u. for the 1/2^{+}→3/2^{-} E1 transition in ^{27}Ne, representing one of the strongest E1 strengths observed among the bound discrete states in this mass region. This value is at least 30 times larger than that measured for the 3/2^{-} decay to the 3/2_{gs}^{+} ground state. A comparison of the present results to large-scale shell-model calculations points to an important role of core excitations and deformation in the observed E1 enhancement, suggesting a novel example of the electric dipole modes manifested in weakly bound deformed systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...