Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 152: 106460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340477

ABSTRACT

Oral cavity tumors are a prevalent cause of mandible reconstruction surgeries. The mandible is vital for functions like oralization, respiration, mastication, and deglutition. Current mandible reconstruction methods have low success rates due to complications like plate fracture or exposure, infections, and screw loosening. Autogenous bone grafts are commonly used but carry the risk of donor region morbidity. Despite technological advances, an ideal solution for mandible reconstruction remains elusive. Additive manufacturing in medicine offers personalized prosthetics from patient-specific medical images, allowing for the creation of porous structures with tailored mechanical properties that mimic bone properties. This study compared a commercial reconstruction plate with a lattice-structured personalized prosthesis under different biting and osseointegration conditions using Finite Element Analysis. Patient-specific images were obtained from an individual who underwent mandible reconstruction with a commercial plate and suffered from plate fracture by fatigue after 26 months. Compared to the commercial plate, the maximum von Mises equivalent stress was significantly lowered for the personalized prosthesis, hindering a possible fatigue fracture. The equivalent von Mises strains found in bone were within bone maintenance and remodeling intervals. This work introduces a design that doesn't require grafts for large bone defects and allows for dental prosthesis addition without the need for implants.


Subject(s)
Bone Plates , Bone Screws , Humans , Finite Element Analysis , Bone Transplantation , Mandible/surgery
2.
Pharmaceutics ; 13(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069254

ABSTRACT

Cobalt-base alloys (Co-Cr-Mo) are widely employed in dentistry and orthopedic implants due to their biocompatibility, high mechanical strength and wear resistance. The osseointegration of implants can be improved by surface modification techniques. However, complex geometries obtained by additive manufacturing (AM) limits the efficiency of mechanical-based surface modification techniques. Therefore, plasma immersion ion implantation (PIII) is the best alternative, creating nanotopography even in complex structures. In the present study, we report the osseointegration results in three conditions of the additively manufactured Co-Cr-Mo alloy: (i) as-built, (ii) after PIII, and (iii) coated with titanium (Ti) followed by PIII. The metallic samples were designed with a solid half and a porous half to observe the bone ingrowth in different surfaces. Our results revealed that all conditions presented cortical bone formation. The titanium-coated sample exhibited the best biomechanical results, which was attributed to the higher bone ingrowth percentage with almost all medullary canals filled with neoformed bone and the pores of the implant filled and surrounded by bone ingrowth. It was concluded that the metal alloys produced for AM are biocompatible and stimulate bone neoformation, especially when the Co-28Cr-6Mo alloy with a Ti-coated surface, nanostructured and anodized by PIII is used, whose technology has been shown to increase the osseointegration capacity of this implant.

3.
Prog Addit Manuf ; 6(1): 19-37, 2021.
Article in English | MEDLINE | ID: mdl-38624444

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread through more than 180 countries, leading to diverse health systems overload around the world. Because of the high number of patients and the supply chain disruption, it generated a shortage of medical devices and personal protective equipment. In this context, initiatives from the additive manufacturing community emerged to fight the lack of devices. Diverse designs were produced and are currently being used in hospitals by patients and health workers. However, as some devices must follow strict standards, these products may not fulfill these standards. Therefore, to ensure the user's health, there is a need for understanding each device, their usage, and standards. This study reviews the use of additive manufacturing during COVID-19 pandemic. It gathers the source of several 3D printed devices such as face shields, face masks, valves, nasopharyngeal swabs, and others, discussing their use and regulatory issues. In this regard, the major drawbacks of the technology, addressed for the next pandemic scenario, are highlighted. Finally, some insights of the future of additive manufacturing during emergency are given and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...