Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 337: 117696, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36934498

ABSTRACT

The ability to quantify nature's value for tourism has significant implications for natural resource management and sustainable development policy. This is especially true in the Eastern Caribbean, where many countries are embracing the concept of the Blue Economy. The utilization of user-generated content (UGC) to understand tourist activities and preferences, including the use of artificial intelligence and machine learning approaches, remains at the early stages of development and application. This work describes a new effort which has modelled and mapped multiple nature dependent sectors of the tourism industry across five small island nations. It makes broad use of UGC, while acknowledging the challenges and strengthening the approach with substantive input, correction, and modification from local experts. Our approach to measuring the nature-dependency of tourism is practical and scalable, producing data, maps and statistics of sufficient detail and veracity to support sustainable resource management, marine spatial planning, and the wider promotion of the Blue Economy framework.


Subject(s)
Big Data , Tourism , Artificial Intelligence , Sustainable Development , Conservation of Natural Resources
2.
Nat Ecol Evol ; 7(1): 51-61, 2023 01.
Article in English | MEDLINE | ID: mdl-36443466

ABSTRACT

Sustaining the organisms, ecosystems and processes that underpin human wellbeing is necessary to achieve sustainable development. Here we define critical natural assets as the natural and semi-natural ecosystems that provide 90% of the total current magnitude of 14 types of nature's contributions to people (NCP), and we map the global locations of these critical natural assets at 2 km resolution. Critical natural assets for maintaining local-scale NCP (12 of the 14 NCP) account for 30% of total global land area and 24% of national territorial waters, while 44% of land area is required to also maintain two global-scale NCP (carbon storage and moisture recycling). These areas overlap substantially with cultural diversity (areas containing 96% of global languages) and biodiversity (covering area requirements for 73% of birds and 66% of mammals). At least 87% of the world's population live in the areas benefitting from critical natural assets for local-scale NCP, while only 16% live on the lands containing these assets. Many of the NCP mapped here are left out of international agreements focused on conserving species or mitigating climate change, yet this analysis shows that explicitly prioritizing critical natural assets and the NCP they provide could simultaneously advance development, climate and conservation goals.


Subject(s)
Ecosystem , Planets , Humans , Animals , Conservation of Natural Resources , Biodiversity , Birds , Mammals
3.
PLoS One ; 17(1): e0262621, 2022.
Article in English | MEDLINE | ID: mdl-35061815

ABSTRACT

Native forests on tropical islands have been displaced by non-native species, leading to calls for their transformation. Simultaneously, there is increasing recognition that tropical forests can help sequester carbon that would otherwise enter the atmosphere. However, it is unclear if native forests sequester more or less carbon than human-altered landscapes. At Palmyra Atoll, efforts are underway to transform the rainforest composition from coconut palm (Cocos nucifera) dominated to native mixed-species. To better understand how this landscape-level change will alter the atoll's carbon dynamics, we used field sampling, remote sensing, and parameter estimates from the literature to model the total carbon accumulation potential of Palmyra's forest before and after transformation. The model predicted that replacing the C. nucifera plantation with native species would reduce aboveground biomass from 692.6 to 433.3 Mg C. However, expansion of the native Pisonia grandis and Heliotropium foertherianum forest community projected an increase in soil carbon to at least 13,590.8 Mg C, thereby increasing the atoll's overall terrestrial carbon storage potential by 11.6%. Nearshore sites adjacent to C. nucifera canopy had a higher dissolved organic carbon (DOC) concentration (110.0 µMC) than sites adjacent to native forest (81.5 µMC), suggesting that, in conjunction with an increase in terrestrial carbon storage, replacing C. nucifera with native forest will reduce the DOC exported from the forest into in nearshore marine habitats. Lower DOC levels have potential benefits for corals and coral dependent communities. For tropical islands like Palmyra, reverting from C. nucifera dominance to native tree dominance could buffer projected climate change impacts by increasing carbon storage and reducing coral disease.


Subject(s)
Carbon Sequestration , Conservation of Natural Resources , Coral Reefs , Trees , Biomass , Conservation of Natural Resources/methods , Pacific Islands , Rainforest
SELECTION OF CITATIONS
SEARCH DETAIL
...