Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
Clin Exp Immunol ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39192704

ABSTRACT

Clinical manifestations, as distinct from thrombotic and obstetric morbidity, were recently included in the update of classification criteria of the antiphospholipid syndrome (APS). However, the existence of several patients with clinical manifestations suggestive of APS, but negative for criteria antiphospholipid antibodies (aPLs) [anti-cardiolipin antibodies (aCL), anti-ß2-glycoprotein I antibodies (aß2-GPI) and lupus anticoagulant] may suggest an update of diagnostic criteria. In this study, we analyzed the prevalence of six non-criteria aPLs in a large monocentric cohort of patients with seronegative APS (SN-APS), to investigate their possible diagnostic role. aCL IgA, aß2-GPI IgA and aß2-GPI Domain 1 antibodies were detected by chemiluminescence, anti-phosphatidylserine/prothrombin (aPS/PT) IgG, anti-vimentin/cardiolipin (aVim/CL) IgG and anti-carbamylated-ß2-glycoprotein I (aCarb-ß2-GPI) IgG by ELISA in sera from 144 SN-APS patients. In SN-APS patients, aCL IgA were detected in 4/144 (2.77%), aß2-GPI IgA in 2/144 (1.39%), aß2-GPI-Domain 1 in 1/144 (0.69%), aPS/PT in 16/144 (11.11%), aVim/CL in 37/144 (25.69%) and aCarb-ß2-GPI in 43/144 patients (29.86%). Patients negative for all non-criteria aPL assays were 77/144 (53.47%). Notably, the Venn diagram showed that aCarb-ß2-GPI together with aVim/CL represented the prevalent combination of positive antibodies. In SN-APS patients, aCL IgA were associated with recurrent thrombosis (OR11.48; p=0.03); in obstetric SN-APS patients, aPS/PT were significantly associated with foetal deaths (OR4.84; p=0.01), aVim/CL with spontaneous abortions (OR2.71; p=0.016). This study indicates that aPS/PT, aVim/CL and aCarb-ß2-GPI antibodies may represent useful tools to identify "seronegative" APS patients, who are negative for criteria aPLs, supporting the need to make testing for non-criteria aPLs more accessible in patients with SN-APS.

3.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628944

ABSTRACT

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, characterized by persistent joint inflammation, leading to cartilage and bone destruction. Autoantibody production is directed to post-translational modified (PTM) proteins, i.e., citrullinated or carbamylated. Autophagy may be the common feature in several types of stress (smoking, joint injury, and infections) and may be involved in post-translational modifications (PTMs) in proteins and the generation of citrullinated and carbamylated peptides recognized by the immune system in RA patients, with a consequent breakage of tolerance. Interestingly, autophagy actively provides information to neighboring cells via a process called secretory autophagy. Secretory autophagy combines the autophagy machinery with the secretion of cellular content via extracellular vesicles (EVs). A role for exosomes in RA pathogenesis has been recently demonstrated. Exosomes are involved in intercellular communications, and upregulated proteins and RNAs may contribute to the development of inflammatory arthritis and the progression of RA. In RA, most of the exosomes are produced by leukocytes and synoviocytes, which are loaded with PTM proteins, mainly citrullinated proteins, inflammatory molecules, and enzymes that are implicated in RA pathogenesis. Microvesicles derived from cell plasma membrane may also be loaded with PTM proteins, playing a role in the immunopathogenesis of RA. An analysis of changes in EV profiles, including PTM proteins, could be a useful tool for the prevention of inflammation in RA patients and help in the discovery of personalized medicine.


Subject(s)
Arthritis, Rheumatoid , Exosomes , Extracellular Vesicles , Humans , Arthritis, Rheumatoid/etiology , Autophagy , Inflammation
4.
Front Immunol ; 14: 1129201, 2023.
Article in English | MEDLINE | ID: mdl-36936925

ABSTRACT

Background: Several viral and bacterial infections, including COVID-19, may lead to both thrombotic and hemorrhagic complications. Previously, it has been demonstrated an "in vitro" pathogenic effect of "antiphospholipid" antibodies (aPLs), which are able to activate a proinflammatory and procoagulant phenotype in monocytes, endothelial cells and platelets. This study analyzed the occurrence of aPL IgG in patients with acute ischemic stroke (AIS) during COVID-19, evaluating the effect of Ig fractions from these patients on signaling and functional activation of platelets. Materials and methods: Sera from 10 patients with AIS during COVID-19, 10 non-COVID-19 stroke patients, 20 COVID-19 and 30 healthy donors (HD) were analyzed for anti-cardiolipin, anti-ß2-GPI, anti-phosphatidylserine/prothrombin and anti-vimentin/CL antibodies by ELISA. Platelets from healthy donors were incubated with Ig fractions from these patients or with polyclonal anti-ß2-GPI IgG and analyzed for phospho-ERK and phospho-p38 by western blot. Platelet secretion by ATP release dosage was also evaluated. Results: We demonstrated the presence of aPLs IgG in sera of patients with AIS during COVID-19. Treatment with the Ig fractions from these patients or with polyclonal anti-ß2-GPI IgG induced a significant increase of phospho-ERK and phospho-p38 expression. In the same vein, platelet activation was supported by the increase of adenyl nucleotides release induced by Ig fractions. Conclusions: This study demonstrates the presence of aPLs in a subgroup of COVID-19 patients who presented AIS, suggesting a role in the mechanisms contributing to hypercoagulable state in these patients. Detecting these antibodies as a serological marker to check and monitor COVID-19 may contribute to improve the risk stratification of thromboembolic manifestations in these patients.


Subject(s)
Antiphospholipid Syndrome , COVID-19 , Ischemic Stroke , Stroke , Humans , Endothelial Cells , COVID-19/complications , Antibodies, Antiphospholipid , beta 2-Glycoprotein I , Platelet Activation , Stroke/complications , Signal Transduction , Immunoglobulin G
5.
J Clin Med ; 12(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36769539

ABSTRACT

The pathological features of antiphospholipid syndrome (APS) are related to the activity of circulating antiphospholipid antibodies (aPLs) associated with vascular thrombosis and obstetric complications. Indeed, aPLs are not only disease markers, but also play a determining pathogenetic role in APS and exert their effects through the activation of cells and coagulation factors and inflammatory mediators for the materialization of the thromboinflammatory pathogenetic mechanism. Cellular activation in APS necessarily involves the interaction of aPLs with target receptors on the cell membrane, capable of triggering the signal transduction pathway(s). This interaction occurs at specific microdomains of the cell plasma membrane called lipid rafts. In this review, we focus on the key role of lipid rafts as signaling platforms in the pathogenesis of APS, and propose this pathogenetic step as a strategic target of new therapies in order to improve classical anti-thrombotic approaches with "new" immunomodulatory drugs.

6.
Rheumatology (Oxford) ; 62(6): 2312-2319, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36255236

ABSTRACT

OBJECTIVES: To investigate the expression of citrullinated and carbamylated proteins in extracellular microvesicles (EMVs) from RA patients. METHODS: We enrolled 24 RA naïve for biological therapy and 20 healthy donors (HD), matched for age and sex. For each patient, laboratory and clinical data were recorded and clinical indexes were measured (Clinical Disease Activity Index, Simplified Disease Activity Index, DAS28). EMVs in RA patients and HD were purified from plasma and measured by nanoparticle tracking analysis (NanoSight). Further, EMVs were incubated with anti-citrullinated/carbamylated proteins antibodies and processed by flow cytometry and western blot to evaluate the expression of citrullinated/carbamylated antigens. RESULTS: NanoSight revealed a significant increase of EMVs in RA compared with HD. Moreover, cytofluorimetric analysis showed a significative higher expression of citrullinated antigens on EMVs' surface in RA than donors, while no substantial difference was found in the expression of carbamylated antigens. These data were confirmed by western blot which identified vimentin, glycolytic enzyme alpha-enolase 1 and collagen type II as the main citrullinated and carbamylated proteins carried by EMVs. Finally, a relevant correlation between the expression of citrullinated antigens and disease activity was found. CONCLUSIONS: The results of this study suggest an involvement of EMVs in the pathogenesis of RA by inducing autoimmunity.


Subject(s)
Arthritis, Rheumatoid , Autoantibodies , Humans , Autoantigens , Blotting, Western , Collagen Type II
7.
Front Immunol ; 13: 932181, 2022.
Article in English | MEDLINE | ID: mdl-35860235

ABSTRACT

Antiphospholipid syndrome (APS), characterized by artherial and/or venous thrombosis, pregnancy morbidity and "antiphospholipid" antibodies (aPLs), is more common in women than in men, with a female to male ratio of about 3.5:1. Only few studies have investigated the clinical differences between male and female patients with APS. Therefore, this study was aimed to analyze the differences of clinical manifestations and laboratory tests, at diagnosis, between female and male APS patients and the clinical outcome. We enrolled 191 consecutive APS patients (125 with primary APS, PAPS, and 66 with secondary APS, SAPS) with a female predominant ratio of approximately 3:1 (142 vs 49). The prevalence of PAPS was higher in males than females (p<0.001). The analysis of aPL profile revealed that high IgM anti-cardiolipin (aCL) and high-medium IgG aCL titers were more frequent in males. In thrombotic APS peripheral arterial thrombosis was more common in male than female patients (p=0.049), as well as myocardial infarction (p=0.031). Multivariate analysis to correct for cardiovascular risk factors, high titer of aPLs and triple positivity for aPLs, revealed that the odds ratio for myocardial infarction in male was 3.77. Thus, APS may be considered as a disease in which serological (IgM titer) and clinical profiles are influenced by gender.


Subject(s)
Antiphospholipid Syndrome , Myocardial Infarction , Thrombosis , Antibodies, Antiphospholipid , Antiphospholipid Syndrome/complications , Antiphospholipid Syndrome/diagnosis , Antiphospholipid Syndrome/epidemiology , Cardiolipins , Female , Humans , Immunoglobulin M , Male , Myocardial Infarction/complications , Pregnancy , Sex Factors
8.
Cells ; 11(8)2022 04 11.
Article in English | MEDLINE | ID: mdl-35455968

ABSTRACT

In this study we analyzed whether anti-ß2-GPI antibodies from patients with APS induce the endothelial cell expression of Tissue Factor (TF) by a LRP6 signal transduction pathway involving lipid rafts. HUVEC were stimulated with affinity purified anti-ß2-GPI antibodies. Both LRP6 and ß-catenin phosphorylation, as well as TF expression, were evaluated by western blot. Results demonstrated that triggering with affinity purified anti-ß2-GPI antibodies induced LRP6 phosphorylation with consequent ß-catenin activation, leading to TF expression on the cell surface. Interestingly, the lipid rafts affecting agent methyl-ß-cyclodextrin as well as the LRP6 inhibitor Dickkopf 1 (DKK1) partially reduced the anti-ß2-GPI antibodies effect, indicating that the anti-ß2-GPI effects on TF expression may depend on a signalling transduction pathway involving both lipid rafts and LRP6. An interaction between ß2-GPI, LRP6 and PAR-2 within these microdomains was demonstrated by gradient fractionation and coimmunoprecipitation experiments. Thus, anti-ß2-GPI antibodies react with their target antigen likely associated to LRP6 and PAR-2 within plasma membrane lipid rafts of the endothelial cell. Anti-ß2-GPI binding triggers ß-catenin phosphorylation, leading to a procoagulant phenotype characterized by TF expression. These findings deal with a novel signal transduction pathway which provides new insight in the APS pathogenesis, improving the knowledge of valuable therapeutic target(s).


Subject(s)
Antiphospholipid Syndrome , Low Density Lipoprotein Receptor-Related Protein-6 , Membrane Microdomains , Signal Transduction , Thromboplastin , Endothelial Cells/metabolism , Humans , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Membrane Microdomains/metabolism , Thromboplastin/metabolism , beta 2-Glycoprotein I , beta Catenin/metabolism
9.
Rheumatology (Oxford) ; 61(10): 4187-4197, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35108369

ABSTRACT

OBJECTIVES: Antiphospholipid syndrome (APS) is a prothrombotic condition defined by recurrent thrombosis, pregnancy complications and circulating antiphospholipid antibodies (aPL), including anti-ß2-glycoprotein I (ß2-GPI). In clinical practice it is possible to find patients with APS persistently negative for the aPL tests according to Sydney criteria ('seronegative APS', SN-APS). Recently, several autoimmune responses have been described as a consequence of post-translational modifications of their target autoantigens. This study was undertaken to test carbamylated-ß2-GPI (Carb-ß2-GPI) as a new autoantigen of APS. METHODS: ß2-GPI was carbamylated by potassium cyanate and used to investigate its effect on monocyte-derived dendritic cell (moDC) phenotype and function. Sera from 114 SN-APS patients, 60 APS, 20 patients with RA, 20 non-APS thrombosis and 50 healthy donors were analysed for anti-Carb-ß2-GPI by ELISA. RESULTS: Carb-ß2-GPI is able to activate moDCs, inducing upregulation of CD80, CD86 and CD40, activation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and nuclear factor-κB, and IL-12p70 release. Serological results showed that both 37/114 SN-APS (32.46%) and 23/60 APS (38.33%) patients resulted positive for anti-Carb-ß2-GPI. Interestingly, SN-APS patients who tested positive for anti-Carb-ß2-GPI showed a higher prevalence of thrombocytopenia (P = 0.04, likelihood positive ratio of 3.9). CONCLUSION: Data obtained from both functional tests on moDCs and immunological approaches prompted identification of Carb-ß2-GPI as a 'new' antigenic target in APS. In particular, anti-Carb-ß2-GPI revealed a potential usefulness in identification of a significant proportion of SN-APS patients. Moreover, since patients who tested positive for anti-Carb-ß2-GPI reported a high risk of thrombocytopenia, this test may be considered a suitable approach in the clinical evaluation of SN-APS.


Subject(s)
Antiphospholipid Syndrome , Thrombocytopenia , Thrombosis , Antibodies, Antiphospholipid , Antiphospholipid Syndrome/complications , Autoantigens , Extracellular Signal-Regulated MAP Kinases , Female , Humans , NF-kappa B , Pregnancy , Protein Carbamylation , Thrombocytopenia/complications , Thrombosis/etiology , beta 2-Glycoprotein I , p38 Mitogen-Activated Protein Kinases
11.
Rheumatology (Oxford) ; 61(2): 826-833, 2022 02 02.
Article in English | MEDLINE | ID: mdl-33970223

ABSTRACT

OBJECTIVE: We aimed to analyse the prevalence of non-criteria anti-phospholipid (aPL) antibodies and their role in the diagnosis, treatment and prognosis in a cohort of patients with clinical features consistent with a diagnosis of antiphospholipid syndrome (APS), but persistently negative for criteria aPL - anti-cardiolipin antibodies (aCL), anti-ß2-glycoprotein I antibodies (aß2-GPI) and lupus anticoagulant (LA) - named seronegative APS (SN-APS). METHODS: Sera from SN-APS patients were tested for aCL by TLC-immunostaining, anti-vimentin/cardiolipin (aVim/CL) and anti-phosphatidylserine/prothrombin (anti-PS/PT) by ELISA. Control groups of our study were APS patients and healthy controls. RESULTS: We enrolled 114 consecutive SN-APS patients, 69 (60.5%) resulted positive for at least one non-criteria test in two occasions 12 weeks apart. Among the persistently positive patients to these tests, 97% resulted positive for aCL by TLC-immunostaining, 52.3% for aVim/CL and 17.4% for aPS/PT. SN-APS patients with double positivity (aCL by TLC-immunostaining and aVim/CL) showed a likelihood positive ratio of 8 to present mixed thrombotic and obstetrical features. Among SN-APS patients tested positive, after the therapeutic changes, three cases of recurrent thrombosis were observed [median follow-up 41 months (IQR 39.5)]. Twenty pregnancies were recorded in 17 SN-APS patients after the detection of unconventional aPL and 12 of them (60%) experienced a good outcome under conventional treatment for APS. CONCLUSIONS: This is the largest monocentric study demonstrating that aCL tested by TLC-immunostaining and aVim/CL can detect aPL positivity in SN-APS. It may encourage clinicians to monitor and provide adequate targeted therapy, which improve SN-APS prognosis.


Subject(s)
Antibodies, Antiphospholipid/blood , Antiphospholipid Syndrome/diagnosis , Adult , Antiphospholipid Syndrome/blood , Antiphospholipid Syndrome/immunology , Cardiolipins/immunology , Case-Control Studies , Chromatography, Thin Layer , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Phosphatidylserines/immunology , Prognosis , Prothrombin/immunology , Vimentin/immunology , beta 2-Glycoprotein I/immunology
13.
Cells ; 10(9)2021 09 13.
Article in English | MEDLINE | ID: mdl-34572057

ABSTRACT

ER lipid raft-associated protein 1 (ERLIN1) and 2 (ERLIN2) are 40 kDa transmembrane glycoproteins belonging to the family of prohibitins, containing a PHB domain. They are generally localized in the endoplasmic reticulum (ER), where ERLIN1 forms a heteroligomeric complex with its closely related ERLIN2. Well-defined functions of ERLINS are promotion of ER-associated protein degradation, mediation of inositol 1,4,5-trisphosphate (IP3) receptors, processing and regulation of lipid metabolism. Until now, ERLINs have been exclusively considered protein markers of ER lipid raft-like microdomains. However, under pathophysiological conditions, they have been described within mitochondria-associated endoplasmic reticulum membranes (MAMs), tethering sites between ER and mitochondria, characterized by the presence of specialized raft-like subdomains enriched in cholesterol and gangliosides, which play a key role in the membrane scrambling and function. In this context, it is emerging that ER lipid raft-like microdomains proteins, i.e., ERLINs, may drive mitochondria-ER crosstalk under both physiological and pathological conditions by association with MAMs, regulating the two main processes underlined, survival and death. In this review, we describe the role of ERLINs in determining cell fate by controlling the "interchange" between apoptosis and autophagy pathways, considering that their alteration has a significant impact on the pathogenesis of several human diseases.


Subject(s)
Calcium Signaling , Endoplasmic Reticulum/physiology , Lipid Metabolism , Membrane Microdomains/physiology , Mitochondrial Membranes/physiology , Nerve Tissue Proteins/metabolism , Apoptosis , Autophagy , Humans , Nerve Tissue Proteins/genetics , Prohibitins
14.
Clin Exp Immunol ; 205(3): 326-332, 2021 09.
Article in English | MEDLINE | ID: mdl-34107056

ABSTRACT

Anti-phospholipid syndrome (APS) is a systemic autoimmune disorder defined by the simultaneous presence of vascular clinical events, pregnancy morbidity and anti-phospholipid antibodies (aPL). In clinical practice, it is possible to find patients with APS who are persistently negative for the routine aPL tests (seronegative APS; SN-APS). Recently, the identification of aPL immunoglobulin (Ig)A and/or anti-ß2-glycoprotein-I (ß2-GPI) IgA was shown to represent a further test in SN-APS patients. In this study we analyzed the presence of anti-vimentin/cardiolipin (aVim/CL) IgA in a large cohort of patients with SN-APS, evaluating their possible association with clinical manifestations of the syndrome. This study includes 60 consecutive SN-APS patients, 30 patients with APS and 40 healthy donors. aVim/CL IgA were detected by enzyme-linked immunosorbent assay (ELISA). Results show that 12 of 30 APS patients (40%) and 16 of 60 SN-APS patients (26.7%) resulted positive for aVim/CL IgA. Interestingly, SN-APS patients who tested positive for aVim/CL IgA showed a higher prevalence of arterial thrombosis (p = 0.017, likelihood positive ratio = 5.7). This study demonstrates for the first time, to our knowledge, the presence of aVim/CL IgA in sera of patients with APS. In particular, they revealed a potential usefulness in identification of a significant proportion of SN-APS patients. Moreover, as patients tested positive for aVim/CL IgA reported a high likelihood ratio to have the clinical features of APS, this test may be considered a suitable approach in the clinical evaluation of SN-APS.


Subject(s)
Antibodies, Anticardiolipin/blood , Antibodies, Antiphospholipid/blood , Antiphospholipid Syndrome/diagnosis , Immunoglobulin A/blood , Vimentin/immunology , Adult , Antiphospholipid Syndrome/blood , Antiphospholipid Syndrome/immunology , Female , Humans , Immunoglobulin A/immunology , Lupus Erythematosus, Systemic/diagnosis , Male , Middle Aged , Thrombosis/epidemiology , beta 2-Glycoprotein I/immunology
15.
J Thromb Haemost ; 19(9): 2302-2313, 2021 09.
Article in English | MEDLINE | ID: mdl-34107171

ABSTRACT

BACKGROUND: Anti-phospholipid syndrome (APS) is characterized by arterial and/or venous thrombosis and pregnancy morbidity associated with the presence of "anti-phospholipid antibodies." Thrombosis may be the result of a hypercoagulable state related to activation of endothelial cells and platelets by anti-ß2-glycoprotein I (ß2-GPI) antibodies. Anti-ß2-GPI antibodies induce a proinflammatory and procoagulant phenotype in these cells that, after activation, express tissue factor (TF), the major initiator of the clotting cascade, playing a role in thrombotic manifestations. Moreover, TF expression may also be induced by heparanase, an endo-ß-D-glucuronidase, that generates heparan sulfate fragments, regulating inflammatory responses. OBJECTIVES: In this study we analyzed, in human platelets and endothelial cells, the effect of a new symmetrical 2-aminophenyl-benzazolyl-5-acetate derivative (RDS3337), able to inhibit heparanase activity, on signal transduction pathways leading to TF expression triggered by anti-ß2-GPI. METHODS: Platelets and endothelial cells were incubated with affinity purified anti-ß2-GPI after pretreatment with RDS3337. Cell lysates were analyzed for phospho-interleukin-1 receptor-associated kinase 1 (IRAK1), phospho-p65 nuclear factor kappa B (NF-κB) and TF by western blot. In addition, platelet activation and secretion by ATP release dosage were evaluated. RESULTS: IRAK phosphorylation and consequent NF-κB activation, as well as TF expression triggered by anti-ß2-GPI treatment were significantly prevented by previous pretreatment with RDS3337. In the same vein, pretreatment with RDS3337 prevented platelet aggregation and ATP release triggered by anti-ß2-GPI antibodies. CONCLUSION: These findings support the view of heparanase involvement in a prothrombotic state related to APS syndrome, suggesting a novel target to regulate overexpression of procoagulant protein(s).


Subject(s)
Glucuronidase , Thromboplastin , Antibodies, Antiphospholipid , Blood Platelets , Endothelial Cells , Humans
16.
Biomolecules ; 11(2)2021 02 05.
Article in English | MEDLINE | ID: mdl-33562550

ABSTRACT

Cardiolipin (CL) is a hallmark phospholipid localized within the inner mitochondrial membrane. Upon several mitochondrial stress conditions, CL is translocated to specialized platforms, where it may play a role in signaling events to promote mitophagy and apoptosis. Recent studies characterized the molecular composition of MAM-associated lipid microdomains and their implications in regulating the autophagic process. In this study we analyzed the presence of CL within MAMs following autophagic stimulus and the possible implication of raft-like microdomains enriched in CL as a signaling platform in autophagosome formation. Human 2FTGH fibroblasts and SKNB-E-2 cells were stimulated under nutrient deprivation with HBSS. MAM fraction was obtained by an ultracentrifugation procedure and analyzed by HPTLC immunostaining. CL interactions with mitofusin2 (MFN2), calnexin (CANX) and AMBRA1 were analyzed by scanning confocal microscopy and coimmunoprecipitation. The analysis revealed that CL accumulates in MAMs fractions following autophagic stimulus, where it interacts with MFN2 and CANX. It associates with AMBRA1, which in turn interacts with BECN1 and WIPI1. This study demonstrates that CL is present in MAM fractions following autophagy triggering and interacts with the multimolecular complex (AMBRA1/BECN1/WIPI1) involved in autophagosome formation. It may have both structural and functional implications in the pathophysiology of neurodegenerative disease(s).


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagosomes/metabolism , Calnexin/metabolism , Cardiolipins/metabolism , GTP Phosphohydrolases/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Autophagosomes/ultrastructure , Autophagy/drug effects , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Blotting, Western , Calnexin/genetics , Cardiolipins/isolation & purification , Cell Fractionation , Cell Line , Fibroblasts/metabolism , Fibroblasts/ultrastructure , GTP Phosphohydrolases/genetics , Gene Expression , Humans , Isotonic Solutions/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Membranes/ultrastructure , Mitochondrial Proteins/genetics , Mitophagy/drug effects , Neurons/metabolism , Neurons/ultrastructure , Protein Binding
17.
Molecules ; 27(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35011295

ABSTRACT

The endocannabinoid system (ECS) exerts immunosuppressive effects, which are mostly mediated by cannabinoid receptor 2 (CBR2), whose expression on leukocytes is higher than CBR1, mainly localized in the brain. Targeted CBR2 activation could limit inflammation, avoiding CBR1-related psychoactive effects. Herein, we evaluated in vitro the biological activity of a novel, selective and high-affinity CBR2 agonist, called JT11, studying its potential CBR2-mediated anti-inflammatory effect. Trypan Blue and MTT assays were used to test the cytotoxic and anti-proliferative effect of JT11 in Jurkat cells. Its pro-apoptotic activity was investigated analyzing both cell cycle and poly PARP cleavage. Finally, we evaluated its impact on LPS-induced ERK1/2 and NF-kB-p65 activation, TNF-α, IL-1ß, IL-6 and IL-8 release in peripheral blood mononuclear cells (PBMCs) from healthy donors. Selective CB2R antagonist SR144528 and CBR2 knockdown were used to further verify the selectivity of JT11. We confirmed selective CBR2 activation by JT11. JT11 regulated cell viability and proliferation through a CBR2-dependent mechanism in Jurkat cells, exhibiting a mild pro-apoptotic activity. Finally, it reduced LPS-induced ERK1/2 and NF-kB-p65 phosphorylation and pro-inflammatory cytokines release in human PBMCs, proving to possess in vitro anti-inflammatory properties. JT11 as CBR2 ligands could enhance ECS immunoregulatory activity and our results support the view that therapeutic strategies targeting CBR2 signaling could be promising for the treatment of chronic inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Apoptosis/drug effects , Cannabinoid Receptor Agonists/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Humans , Inflammation Mediators/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Structure , Phosphorylation/drug effects , Signal Transduction/drug effects
18.
Autophagy ; 17(9): 2528-2548, 2021 09.
Article in English | MEDLINE | ID: mdl-33034545

ABSTRACT

Mitochondria-associated membranes (MAMs) are essential communication subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. We previously demonstrated that, upon macroautophagy/autophagy induction, AMBRA1 is recruited to the BECN1 complex and relocalizes to MAMs, where it regulates autophagy by interacting with raft-like components. ERLIN1 is an endoplasmic reticulum lipid raft protein of the prohibitin family. However, little is known about its association with the MAM interface and its involvement in autophagic initiation. In this study, we investigated ERLIN1 association with MAM raft-like microdomains and its interaction with AMBRA1 in the regulation of the autophagic process. We show that ERLIN1 interacts with AMBRA1 at MAM raft-like microdomains, which represents an essential condition for autophagosome formation upon nutrient starvation, as demonstrated by knocking down ERLIN1 gene expression. Moreover, this interaction depends on the "integrity" of key molecules, such as ganglioside GD3 and MFN2. Indeed, knocking down ST8SIA1/GD3-synthase or MFN2 expression impairs AMBRA1-ERLIN1 interaction at the MAM level and hinders autophagy. In conclusion, AMBRA1-ERLIN1 interaction within MAM raft-like microdomains appears to be pivotal in promoting the formation of autophagosomes.Abbreviations: ACSL4/ACS4: acyl-CoA synthetase long chain family member 4; ACTB/ß-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATG14: autophagy related 14; BECN1: beclin 1; CANX: calnexin; Cy5: cyanine 5; ECL: enhanced chemiluminescence; ER: endoplasmic reticulum; ERLIN1/KE04: ER lipid raft associated 1; FB1: fumonisin B1; FE: FRET efficiency; FRET: Förster/fluorescence resonance energy transfer; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD3: aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)ceramide; HBSS: Hanks' balanced salt solution; HRP: horseradish peroxidase; LMNB1: lamin B1; mAb: monoclonal antibody; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MYC/cMyc: proto-oncogene, bHLH transcription factor; P4HB: prolyl 4-hydroxylase subunit beta; pAb: polyclonal antibody; PE: phycoerythrin; SCAP/SREBP: SREBF chaperone; SD: standard deviation; ST8SIA1: ST8 alpha-N-acetyl-neuraminide alpha-2,8 sialyltransferase 1; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUBB/beta-tubulin: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; VDAC1/porin: voltage dependent anion channel 1.


Subject(s)
Autophagosomes , Autophagy , Autophagosomes/metabolism , Autophagy/genetics , Lipids , Mitochondria/metabolism , Mitochondrial Membranes/metabolism
19.
Int J Mol Sci ; 21(21)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182499

ABSTRACT

Antiphospholipid Syndrome (APS) is an autoimmune disease characterized by arterial and/or venous thrombosis and/or pregnancy morbidity, associated with circulating antiphospholipid antibodies (aPL). In some cases, patients with a clinical profile indicative of APS (thrombosis, recurrent miscarriages or fetal loss), who are persistently negative for conventional laboratory diagnostic criteria, are classified as "seronegative" APS patients (SN-APS). Several findings suggest that aPL, which target phospholipids and/or phospholipid binding proteins, mainly ß-glycoprotein I (ß-GPI), may contribute to thrombotic diathesis by interfering with hemostasis. Despite the strong association between aPL and thrombosis, the exact pathogenic mechanisms underlying thrombotic events and pregnancy morbidity in APS have not yet been fully elucidated and multiple mechanisms may be involved. Furthermore, in many SN-APS patients, it is possible to demonstrate the presence of unconventional aPL ("non-criteria" aPL) or to detect aPL with alternative laboratory methods. These findings allowed the scientists to study the pathogenic mechanism of SN-APS. This review is focused on the evidence showing that these antibodies may play a functional role in the signal transduction pathway(s) leading to thrombosis and pregnancy morbidity in SN-APS. A better comprehension of the molecular mechanisms triggered by aPL may drive development of potential therapeutic strategies in APS patients.


Subject(s)
Antibodies, Antiphospholipid/metabolism , Antiphospholipid Syndrome/metabolism , Antiphospholipid Syndrome/pathology , Animals , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Female , Humans , Pregnancy , Signal Transduction/radiation effects , Thrombosis/metabolism , Thrombosis/pathology
20.
J Cell Commun Signal ; 14(3): 315-323, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32062833

ABSTRACT

LDL receptor-related proteins 6 (LRP6) is a type I transmembrane receptor (C-terminus in cytosol), which appears to be essential in numerous biological processes, since it is an essential co-receptor of Wnt ligands for canonical ß-catenin dependent signal transduction. It was shown that tissue plasminogen activator (tPA), physically interacting with LRP6, induces protein phosphorylation, which may have large implication in the regulation of neural processes. In this investigation we analyzed whether LRP6 is associated with lipid rafts following tPA triggering in neuroblastoma cells and the role of raft integrity in LRP6 cell signaling. Sucrose gradient separation revealed that phosphorylated LRP6 was mainly, but not exclusively present in lipid rafts; this enrichment became more evident after triggering with tPA. In these microdomains LRP6 is strictly associated with ganglioside GM1, a paradigmatic component of these plasma membrane compartments, as revealed by coimmunoprecipitation experiments. As expected, tPA triggering induced LRP6 phosphorylation, which was independent of LRP1, as revealed by knockdown experiments by siRNA, but strictly dependent on raft integrity. Moreover, tPA induced ß-catenin phosphorylation was also significantly prevented by previous pretreatment with methyl-ß-cyclodextrin. Our results demonstrate that LRP6 mediated signal transduction pathway triggered by tPA acts through lipid rafts in neuroblastoma cells. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents. Indeed, these data, pointing to the key role of lipid rafts in tPA triggered signaling involving ß-catenin, may have pharmacological implications, suggesting that cyclodextrins, and potentially other drugs, such as statins, may represent an useful tool.

SELECTION OF CITATIONS
SEARCH DETAIL