Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 25(3): 49, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424393

ABSTRACT

This study explores a novel approach to address the challenges of delivering highly water-soluble drug molecules by employing hydrophobic ion-pairing (HIP) complexes within poly (lactic-co-glycolic acid) (PLGA) microspheres. The HIP complex, formed between doxycycline hyclate (DH) and docusate sodium (DS), renders the drug hydrophobic. The development of the microspheres was done using the QbD approach, namely, Box-Behnken Design (BBD). A comprehensive characterization of the HIP complex confirmed the successful conversion of DH. DH and the HIP complex were effectively loaded into PLGA microspheres using the oil-in-water (O/W) emulsion solvent evaporation method. Results demonstrated significant improvements in percentage entrapment efficiency (% EE) and drug loading (% DL) for DH within the HIP complex-loaded PLGA microspheres compared to DH-loaded microspheres alone. Additionally, the initial burst release of DH reduced to 3% within the initial 15 min, followed by sustained drug release over 8 days. The modified HIP complex strategy offers a promising platform for improving the delivery of highly water-soluble small molecules. It provides high % EE, % DL, minimal initial burst release, and sustained release, thus having the potential to enhance patient compliance and drug delivery efficiency.


Subject(s)
Lactic Acid , Polyglycolic Acid , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polyglycolic Acid/chemistry , Drug Liberation , Lactic Acid/chemistry , Doxycycline , Microspheres , Water/chemistry , Emulsions/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...