Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
F1000Res ; 12: 130, 2023.
Article in English | MEDLINE | ID: mdl-37767021

ABSTRACT

Cancer is driven by mutations of the genome that can result in the activation of oncogenes or repression of tumour suppressor genes. In acute lymphoblastic leukemia (ALL) focal deletions in IKAROS family zinc finger 1 (IKZF1) result in the loss of zinc-finger DNA-binding domains and a dominant negative isoform that is associated with higher rates of relapse and  poorer patient outcomes. Clinically, the presence of IKZF1 deletions informs prognosis and treatment options. In this work we developed a method for detecting exon deletions in genes using RNA-seq with application to IKZF1. We developed a pipeline that first uses a custom transcriptome reference consisting of transcripts with exon deletions.  Next, RNA-seq reads are mapped using a pseudoalignment algorithm to identify reads that uniquely support deletions. These are then evaluated for evidence of the deletion with respect to gene expression and other samples. We applied the algorithm, named Toblerone, to a cohort of 99 B-ALL paediatric samples including validated IKZF1 deletions. Furthermore, we developed a graphical desktop app for non-bioinformatics users that can quickly and easily identify and report deletions in IKZF1 from RNA-seq data with informative graphical outputs.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , RNA-Seq , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Exons/genetics , Mutation/genetics
3.
Plants (Basel) ; 12(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37050054

ABSTRACT

Plant proteins that are secreted without a classical signal peptide leader sequence are termed leaderless secretory proteins (LSPs) and are implicated in both plant development and (a)biotic stress responses. In plant proteomics experimental workflows, identification of LSPs is hindered by the possibility of contamination from other subcellar compartments upon purification of the secretome. Applying machine learning algorithms to predict LSPs in plants is also challenging due to the rarity of experimentally validated examples for training purposes. This work attempts to address this issue by establishing criteria for identifying potential plant LSPs based on experimental observations and training random forest classifiers on the putative datasets. The resultant plant protein database LSPDB and bioinformatic prediction tools LSPpred and SPLpred are available at lsppred.lspdb.org. The LSPpred and SPLpred modules are internally validated on the training dataset, with false positives controlled at 5%, and are also able to classify the limited number of established plant LSPs (SPLpred (3/4, LSPpred 4/4). Until such time as a larger set of bona fide (independently experimentally validated) LSPs is established using imaging technologies (light/fluorescence/electron microscopy) to confirm sub-cellular location, these tools represent a bridging method for predicting and identifying plant putative LSPs for subsequent experimental validation.

5.
Int J Mol Sci ; 21(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238539

ABSTRACT

Metal toxicity is a common problem in crop species worldwide. Some metals are naturally toxic, whereas others such as manganese (Mn) are essential micro-nutrients for plant growth but can become toxic when in excess. Changes in the composition of the xylem sap, which is the main pathway for ion transport within the plant, is therefore vital to understanding the plant's response(s) to metal toxicity. In this study we have assessed the effects of exposure of tomato roots to excess Mn on the protein profile of the xylem sap, using a shotgun proteomics approach. Plants were grown in nutrient solution using 4.6 and 300 µM MnCl2 as control and excess Mn treatments, respectively. This approach yielded 668 proteins reliably identified and quantified. Excess Mn caused statistically significant (at p ≤ 0.05) and biologically relevant changes in relative abundance (≥2-fold increases or ≥50% decreases) in 322 proteins, with 82% of them predicted to be secretory using three different prediction tools, with more decreasing than increasing (181 and 82, respectively), suggesting that this metal stress causes an overall deactivation of metabolic pathways. Processes most affected by excess Mn were in the oxido-reductase, polysaccharide and protein metabolism classes. Excess Mn induced changes in hydrolases and peroxidases involved in cell wall degradation and lignin formation, respectively, consistent with the existence of alterations in the cell wall. Protein turnover was also affected, as indicated by the decrease in proteolytic enzymes and protein synthesis-related proteins. Excess Mn modified the redox environment of the xylem sap, with changes in the abundance of oxido-reductase and defense protein classes indicating a stress scenario. Finally, results indicate that excess Mn decreased the amounts of proteins associated with several signaling pathways, including fasciclin-like arabinogalactan-proteins and lipids, as well as proteases, which may be involved in the release of signaling peptides and protein maturation. The comparison of the proteins changing in abundance in xylem sap and roots indicate the existence of tissue-specific and systemic responses to excess Mn. Data are available via ProteomeXchange with identifier PXD021973.


Subject(s)
Manganese/metabolism , Mucoproteins/genetics , Solanum lycopersicum/genetics , Xylem/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Wall/genetics , Cell Wall/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Proteome/genetics , Proteomics , Transcription Factors/genetics , Xylem/genetics
6.
Blood Adv ; 4(5): 930-942, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32150610

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy, and implementation of risk-adapted therapy has been instrumental in the dramatic improvements in clinical outcomes. A key to risk-adapted therapies includes the identification of genomic features of individual tumors, including chromosome number (for hyper- and hypodiploidy) and gene fusions, notably ETV6-RUNX1, TCF3-PBX1, and BCR-ABL1 in B-cell ALL (B-ALL). RNA-sequencing (RNA-seq) of large ALL cohorts has expanded the number of recurrent gene fusions recognized as drivers in ALL, and identification of these new entities will contribute to refining ALL risk stratification. We used RNA-seq on 126 ALL patients from our clinical service to test the utility of including RNA-seq in standard-of-care diagnostic pipelines to detect gene rearrangements and IKZF1 deletions. RNA-seq identified 86% of rearrangements detected by standard-of-care diagnostics. KMT2A (MLL) rearrangements, although usually identified, were the most commonly missed by RNA-seq as a result of low expression. RNA-seq identified rearrangements that were not detected by standard-of-care testing in 9 patients. These were found in patients who were not classifiable using standard molecular assessment. We developed an approach to detect the most common IKZF1 deletion from RNA-seq data and validated this using an RQ-PCR assay. We applied an expression classifier to identify Philadelphia chromosome-like B-ALL patients. T-ALL proved a rich source of novel gene fusions, which have clinical implications or provide insights into disease biology. Our experience shows that RNA-seq can be implemented within an individual clinical service to enhance the current molecular diagnostic risk classification of ALL.


Subject(s)
Oncogene Proteins, Fusion , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Gene Rearrangement , Genomics , Humans , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Sequence Analysis, RNA
7.
Gigascience ; 8(9)2019 09 01.
Article in English | MEDLINE | ID: mdl-31544213

ABSTRACT

BACKGROUND: Bioinformatics software tools are often created ad hoc, frequently by people without extensive training in software development. In particular, for beginners, the barrier to entry in bioinformatics software development is high, especially if they want to adopt good programming practices. Even experienced developers do not always follow best practices. This results in the proliferation of poorer-quality bioinformatics software, leading to limited scalability and inefficient use of resources; lack of reproducibility, usability, adaptability, and interoperability; and erroneous or inaccurate results. FINDINGS: We have developed Bionitio, a tool that automates the process of starting new bioinformatics software projects following recommended best practices. With a single command, the user can create a new well-structured project in 1 of 12 programming languages. The resulting software is functional, carrying out a prototypical bioinformatics task, and thus serves as both a working example and a template for building new tools. Key features include command-line argument parsing, error handling, progress logging, defined exit status values, a test suite, a version number, standardized building and packaging, user documentation, code documentation, a standard open source software license, software revision control, and containerization. CONCLUSIONS: Bionitio serves as a learning aid for beginner-to-intermediate bioinformatics programmers and provides an excellent starting point for new projects. This helps developers adopt good programming practices from the beginning of a project and encourages high-quality tools to be developed more rapidly. This also benefits users because tools are more easily installed and consistent in their usage. Bionitio is released as open source software under the MIT License and is available at https://github.com/bionitio-team/bionitio.


Subject(s)
Computational Biology , Software
8.
Kidney Int ; 95(5): 1153-1166, 2019 05.
Article in English | MEDLINE | ID: mdl-30827514

ABSTRACT

All nephrons in the mammalian kidney arise from a transient nephron progenitor population that is lost close to the time of birth. The generation of new nephron progenitors and their maintenance in culture are central to the success of kidney regenerative strategies. Using a lentiviral screening approach, we previously generated a human induced nephron progenitor-like state in vitro using a pool of six transcription factors. Here, we sought to develop a more efficient approach for direct reprogramming of human cells that could be applied in vivo. PiggyBac transposons are a non-viral integrating gene delivery system that is suitable for in vivo use and allows for simultaneous delivery of multiple genes. Using an inducible piggyBac transposon system, we optimized a protocol for the direct reprogramming of HK2 cells to induced nephron progenitor-like cells with expression of only 3 transcription factors (SNAI2, EYA1, and SIX1). Culture in conditions supportive of the nephron progenitor state further increased the expression of nephron progenitor genes. The refined protocol was then applied to primary human renal epithelial cells, which integrated into developing nephron structures in vitro and in vivo. Such inducible reprogramming to nephron progenitor-like cells could facilitate direct cellular reprogramming for kidney regeneration.


Subject(s)
Cellular Reprogramming/genetics , DNA Transposable Elements/genetics , Genetic Engineering/methods , Nephrons/physiology , Regeneration/genetics , Cells, Cultured , Gene Transfer Techniques , Homeodomain Proteins/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Primary Cell Culture , Protein Tyrosine Phosphatases/genetics , Snail Family Transcription Factors/genetics
9.
Nat Commun ; 9(1): 5167, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30514835

ABSTRACT

The podocytes within the glomeruli of the kidney maintain the filtration barrier by forming interdigitating foot processes with intervening slit diaphragms, disruption in which results in proteinuria. Studies into human podocytopathies to date have employed primary or immortalised podocyte cell lines cultured in 2D. Here we compare 3D human glomeruli sieved from induced pluripotent stem cell-derived kidney organoids with conditionally immortalised human podocyte cell lines, revealing improved podocyte-specific gene expression, maintenance in vitro of polarised protein localisation and an improved glomerular basement membrane matrisome compared to 2D cultures. Organoid-derived glomeruli retain marker expression in culture for 96 h, proving amenable to toxicity screening. In addition, 3D organoid glomeruli from a congenital nephrotic syndrome patient with compound heterozygous NPHS1 mutations reveal reduced protein levels of both NEPHRIN and PODOCIN. Hence, human iPSC-derived organoid glomeruli represent an accessible approach to the in vitro modelling of human podocytopathies and screening for podocyte toxicity.


Subject(s)
Drug Evaluation, Preclinical , Kidney Glomerulus/cytology , Organoids/cytology , Podocytes/cytology , Cell Culture Techniques/methods , Cell Line , Cells, Cultured , Collagen/metabolism , Female , Gene Expression , Gene Expression Profiling , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/cytology , Insulin/pharmacology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kidney , Laminin/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Nephrotic Syndrome/pathology , Organoids/drug effects , Podocytes/drug effects , Sequence Analysis , Sequence Analysis, RNA , Stem Cells
10.
Genome Biol ; 19(1): 121, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30129428

ABSTRACT

Short tandem repeat (STR) expansions have been identified as the causal DNA mutation in dozens of Mendelian diseases. Most existing tools for detecting STR variation with short reads do so within the read length and so are unable to detect the majority of pathogenic expansions. Here we present STRetch, a new genome-wide method to scan for STR expansions at all loci across the human genome. We demonstrate the use of STRetch for detecting STR expansions using short-read whole-genome sequencing data at known pathogenic loci as well as novel STR loci. STRetch is open source software, available from github.com/Oshlack/STRetch .


Subject(s)
DNA Repeat Expansion/genetics , Microsatellite Repeats/genetics , Software , Alleles , Chromosomes, Human/genetics , Genetic Loci , Genome, Human , Humans , Polymerase Chain Reaction
11.
Plant Cell ; 30(6): 1293-1308, 2018 06.
Article in English | MEDLINE | ID: mdl-29674386

ABSTRACT

Mixed-linkage (1,3;1,4)-ß-glucan (MLG), an abundant cell wall polysaccharide in the Poaceae, has been detected in ascomycetes, algae, and seedless vascular plants, but not in eudicots. Although MLG has not been reported in bryophytes, a predicted glycosyltransferase from the moss Physcomitrella patens (Pp3c12_24670) is similar to a bona fide ascomycete MLG synthase. We tested whether Pp3c12_24670 encodes an MLG synthase by expressing it in wild tobacco (Nicotiana benthamiana) and testing for release of diagnostic oligosaccharides from the cell walls by either lichenase or (1,4)-ß-glucan endohydrolase. Lichenase, an MLG-specific endohydrolase, showed no activity against cell walls from transformed N. benthamiana, but (1,4)-ß-glucan endohydrolase released oligosaccharides that were distinct from oligosaccharides released from MLG by this enzyme. Further analysis revealed that these oligosaccharides were derived from a novel unbranched, unsubstituted arabinoglucan (AGlc) polysaccharide. We identified sequences similar to the P. patens AGlc synthase from algae, bryophytes, lycophytes, and monilophytes, raising the possibility that other early divergent plants synthesize AGlc. Similarity of P. patens AGlc synthase to MLG synthases from ascomycetes, but not those from Poaceae, suggests that AGlc and MLG have a common evolutionary history that includes loss in seed plants, followed by a more recent independent origin of MLG within the monocots.


Subject(s)
Bryopsida/metabolism , Cell Wall/metabolism , Glucans/metabolism , Glycosyltransferases/metabolism
12.
Plant Physiol ; 174(2): 886-903, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28446635

ABSTRACT

Intrinsically disordered proteins (IDPs) are functional proteins that lack a well-defined three-dimensional structure. The study of IDPs is a rapidly growing area as the crucial biological functions of more of these proteins are uncovered. In plants, IDPs are implicated in plant stress responses, signaling, and regulatory processes. A superfamily of cell wall proteins, the hydroxyproline-rich glycoproteins (HRGPs), have characteristic features of IDPs. Their protein backbones are rich in the disordering amino acid proline, they contain repeated sequence motifs and extensive posttranslational modifications (glycosylation), and they have been implicated in many biological functions. HRGPs are evolutionarily ancient, having been isolated from the protein-rich walls of chlorophyte algae to the cellulose-rich walls of embryophytes. Examination of HRGPs in a range of plant species should provide valuable insights into how they have evolved. Commonly divided into the arabinogalactan proteins, extensins, and proline-rich proteins, in reality, a continuum of structures exists within this diverse and heterogenous superfamily. An inability to accurately classify HRGPs leads to inconsistent gene ontologies limiting the identification of HRGP classes in existing and emerging omics data sets. We present a novel and robust motif and amino acid bias (MAAB) bioinformatics pipeline to classify HRGPs into 23 descriptive subclasses. Validation of MAAB was achieved using available genomic resources and then applied to the 1000 Plants transcriptome project (www.onekp.com) data set. Significant improvement in the detection of HRGPs using multiple-k-mer transcriptome assembly methodology was observed. The MAAB pipeline is readily adaptable and can be modified to optimize the recovery of IDPs from other organisms.


Subject(s)
Computational Biology/methods , Glycoproteins/chemistry , Hydroxyproline/chemistry , Plant Proteins/chemistry , Plant Proteins/genetics , Amino Acid Motifs , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Glycoproteins/genetics , Intrinsically Disordered Proteins , Proteome , Reproducibility of Results , Transcriptome
13.
Plant Physiol ; 174(2): 904-921, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28446636

ABSTRACT

The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots.


Subject(s)
Evolution, Molecular , Glycoproteins/metabolism , Hydroxyproline/metabolism , Plant Proteins/genetics , Plants/genetics , Transcriptome/genetics , Amino Acid Motifs , Amino Acid Sequence , Glycoproteins/chemistry , Glycoproteins/genetics , Glycosylphosphatidylinositols , Likelihood Functions , Mucoproteins/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Time Factors
14.
Front Plant Sci ; 7: 1451, 2016.
Article in English | MEDLINE | ID: mdl-27729919

ABSTRACT

In proteomic analyses of the plant secretome, the presence of putative leaderless secretory proteins (LSPs) is difficult to confirm due to the possibility of contamination from other sub-cellular compartments. In the absence of a plant-specific tool for predicting LSPs, the mammalian-trained SecretomeP has been applied to plant proteins in multiple studies to identify the most likely LSPs. This study investigates the effectiveness of using SecretomeP on plant proteins, identifies its limitations and provides a benchmark for its use. In the absence of experimentally verified LSPs we exploit the common-feature hypothesis behind SecretomeP and use known classically secreted proteins (CSPs) of plants as a proxy to evaluate its accuracy. We show that, contrary to the common-feature hypothesis, plant CSPs are a poor proxy for evaluating LSP detection due to variation in the SecretomeP prediction scores when the signal peptide (SP) is modified. Removing the SP region from CSPs and comparing the predictive performance against non-secretory proteins indicates that commonly used threshold scores of 0.5 and 0.6 result in false-positive rates in excess of 0.3 when applied to plants proteins. Setting the false-positive rate to 0.05, consistent with the original mammalian performance of SecretomeP, yields only a marginally higher true positive rate compared to false positives. Therefore the use of SecretomeP on plant proteins is not recommended. This study investigates the trade-offs of using SecretomeP on plant proteins and provides insights into predictive features for future development of plant-specific common-feature tools.

16.
PLoS One ; 10(4): e0123878, 2015.
Article in English | MEDLINE | ID: mdl-25894575

ABSTRACT

Garden asparagus (Asparagus officinalis L.) is a commercially important crop species utilized for its excellent source of vitamins, minerals and dietary fiber. However, after harvest the tissue hardens and its quality rapidly deteriorates because spear cell walls become rigidified due to lignification and substantial increases in heteroxylan content. This latter observation prompted us to investigate the in vitro xylan xylosyltransferase (XylT) activity in asparagus. The current model system for studying heteroxylan biosynthesis, Arabidopsis, whilst a powerful genetic system, displays relatively low xylan XylT activity in in vitro microsomal preparations compared with garden asparagus therefore hampering our ability to study the molecular mechanism(s) of heteroxylan assembly. Here, we analyzed physiological and biochemical changes of garden asparagus spears stored at 4 °C after harvest and detected a high level of xylan XylT activity that accounts for this increased heteroxylan. The xylan XylT catalytic activity is at least thirteen-fold higher than that reported for previously published species, including Arabidopsis and grasses. A biochemical assay was optimized and up to seven successive Xyl residues were incorporated to extend the xylotetraose (Xyl4) acceptor backbone. To further elucidate the xylan biosynthesis mechanism, we used RNA-seq to generate an Asparagus reference transcriptome and identified five putative xylan biosynthetic genes (AoIRX9, AoIRX9-L, AoIRX10, AoIRX14_A, AoIRX14_B) with AoIRX9 having an expression profile that is distinct from the other genes. We propose that Asparagus provides an ideal biochemical system to investigate the biochemical aspects of heteroxylan biosynthesis and also offers the additional benefit of being able to study the lignification process during plant stem maturation.


Subject(s)
Asparagus Plant/cytology , Asparagus Plant/metabolism , Cell Wall/metabolism , Models, Biological , Xylans/biosynthesis , Arabidopsis/metabolism , Asparagus Plant/genetics , Biomass , Biosynthetic Pathways/genetics , Cold Temperature , Fluorescent Dyes/metabolism , Genes, Plant , Hordeum/metabolism , Lignin/metabolism , Microsomes/metabolism , Molecular Sequence Data , Pentosyltransferases , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Time Factors , UDP Xylose-Protein Xylosyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...