Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 18(11): 2123-2137, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37802072

ABSTRACT

Primary carnitine deficiency (PCD) is an autosomal recessive monogenic disorder caused by mutations in SLC22A5. This gene encodes for OCTN2, which transports the essential metabolite carnitine into the cell. PCD patients suffer from muscular weakness and dilated cardiomyopathy. Two OCTN2-defective human induced pluripotent stem cell lines were generated, carrying a full OCTN2 knockout and a homozygous OCTN2 (N32S) loss-of-function mutation. OCTN2-defective genotypes showed lower force development and resting length in engineered heart tissue format compared with isogenic control. Force was sensitive to fatty acid-based media and associated with lipid accumulation, mitochondrial alteration, higher glucose uptake, and metabolic remodeling, replicating findings in animal models. The concordant results of OCTN2 (N32S) and -knockout emphasizes the relevance of OCTN2 for these findings. Importantly, genome-wide analysis and pharmacological inhibitor experiments identified ferroptosis, an iron- and lipid-dependent cell death pathway associated with fibroblast activation as a novel PCD cardiomyopathy disease mechanism.


Subject(s)
Cardiomyopathies , Ferroptosis , Induced Pluripotent Stem Cells , Animals , Humans , Organic Cation Transport Proteins/genetics , Solute Carrier Family 22 Member 5/genetics , Cardiomyopathies/genetics , Lipids
2.
Stem Cell Res ; 55: 102489, 2021 08.
Article in English | MEDLINE | ID: mdl-34375846

ABSTRACT

MYBPC3 is the most frequently affected gene in hypertrophic cardiomyopathy (HCM), which is an autosomal-dominant cardiac disease caused by mutations in sarcomeric proteins. Bi-allelic truncating MYBPC3 mutations are associated with severe forms of neonatal cardiomyopathy. We reprogrammed skin fibroblasts from a HCM patient carrying a heterozygous MYBPC3 truncating mutation into human induced pluripotent stem cells (iPSC) and used CRISPR/Cas9 to generate bi-allelic MYBPC3 truncating mutation and isogenic control hiPSC lines. All lines expressed pluripotency markers, had normal karyotype and differentiated into endoderm, ectoderm and cardiomyocytes in vitro. This set of three lines provides a useful tool to study HCM pathomechanisms.


Subject(s)
Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Alleles , Cardiomyopathy, Hypertrophic/genetics , Heterozygote , Humans , Mutation , Myocytes, Cardiac
3.
EMBO Mol Med ; 13(6): e13074, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33998164

ABSTRACT

The phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated. Mutant cardiomyocytes revealed significantly prolonged Ca2+ transient decay time, Ca2+ -load dependent irregular beating pattern, and lower force. Proteomic analysis revealed less endoplasmic reticulum (ER) and ribosomal and mitochondrial proteins. Electron microscopy showed dilation of the ER and large lipid droplets in close association with mitochondria. Follow-up experiments confirmed impairment of the ER/mitochondria compartment. PLN p.Arg14del end-stage heart failure samples revealed perinuclear aggregates positive for ER marker proteins and oxidative stress in comparison with ischemic heart failure and non-failing donor heart samples. Transduction of PLN p.Arg14del EHTs with the Ca2+ -binding proteins GCaMP6f or parvalbumin improved the disease phenotype. This study identified impairment of the ER/mitochondria compartment without SR dysfunction as a novel disease mechanism underlying PLN p.Arg14del cardiomyopathy. The pathology was improved by Ca2+ -scavenging, suggesting impaired local Ca2+ cycling as an important disease culprit.


Subject(s)
Heart Transplantation , Myocytes, Cardiac , Calcium-Binding Proteins/metabolism , Endoplasmic Reticulum , Humans , Mitochondria , Mutation , Myocytes, Cardiac/metabolism , Proteomics , Tissue Donors
4.
Stem Cell Reports ; 15(4): 983-998, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053362

ABSTRACT

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are commercially available, and cardiac differentiation established routine. Systematic evaluation of several control hiPSC-CM is lacking. We investigated 10 different control hiPSC-CM lines and analyzed function and suitability for drug screening. Five commercial and 5 academic hPSC-CM lines were casted in engineered heart tissue (EHT) format. Spontaneous and stimulated EHT contractions were analyzed, and 7 inotropic indicator compounds investigated on 8 cell lines. Baseline contractile force, kinetics, and rate varied widely among the different lines (e.g., relaxation time range: 118-471 ms). In contrast, the qualitative correctness of responses to BayK-8644, nifedipine, EMD-57033, isoprenaline, and digoxin in terms of force and kinetics varied only between 80% and 93%. Large baseline differences between control cell lines support the request for isogenic controls in disease modeling. Variability appears less relevant for drug screening but needs to be considered, arguing for studies with more than one line.


Subject(s)
Drug Evaluation, Preclinical , Heart/physiology , Induced Pluripotent Stem Cells/cytology , Tissue Engineering , Calcium/metabolism , Cell Line , Extracellular Space/chemistry , Fluorescence , Gene Expression Regulation , Humans , Myocardial Contraction , Myocytes, Cardiac/cytology
5.
Curr Protoc Stem Cell Biol ; 55(1): e127, 2020 12.
Article in English | MEDLINE | ID: mdl-32956561

ABSTRACT

The reproducibility of stem cell research relies on the constant availability of quality-controlled cells. As the quality of human induced pluripotent stem cells (hiPSCs) can deteriorate in the course of a few passages, cell banking is key to achieve consistent results and low batch-to-batch variation. Here, we provide a cost-efficient route to generate master and working cell banks for basic research projects. In addition, we describe minimal protocols for quality assurance including tests for sterility, viability, pluripotency, and genetic integrity. © 2020 The Authors. Basic Protocol 1: Expansion of hiPSCs Basic Protocol 2: Cell banking of hiPSCs Support Protocol 1: Pluripotency assessment by flow cytometry Support Protocol 2: Thawing control: Viability and sterility Support Protocol 3: Potency, viral clearance, and pluripotency: Spontaneous differentiation and qRT-PCR Support Protocol 4: Identity: Short tandem repeat analysis.


Subject(s)
Cryopreservation/methods , Induced Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/cytology , Cell Line , Humans , Quality Control , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...