Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Physiol ; 12: 748895, 2021.
Article in English | MEDLINE | ID: mdl-34867454

ABSTRACT

Melanoma, one of the most lethal cutaneous cancers, is characterized by its ability to metastasize to other distant sites, such as the bone. Melanoma cells revealed a variable in vitro propensity to be attracted toward bone fragments, and melanoma-derived exosomes play a role in regulating the osteotropism of these cells. We have here investigated the lipid profiles of melanoma cell lines (LCP and SK-Mel28) characterized by different metastatic propensities to colonize the bone. We have purified exosomes from cell supernatants by ultracentrifugation, and their lipid composition has been compared to identify potential lipid biomarkers for different migration and invasiveness of melanoma cells. Matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) lipid analysis has been performed on very small amounts of intact parental cells and exosomes by skipping lipid extraction and separation steps. Statistical analysis has been applied to MALDI mass spectra in order to discover significant differences in lipid profiles. Our results clearly show more saturated and shorter fatty acid tails in poorly metastatic (LCP) cells compared with highly metastatic (SK-Mel28) cells, particularly for some species of phosphatidylinositol. Sphingomyelin, lysophosphatidylcholine, and phosphatidic acid were enriched in exosome membranes compared to parental cells. In addition, we have clearly detected a peculiar phospholipid bis(monoacylglycero)phosphate as a specific lipid marker of exosomes. MALDI-TOF/MS lipid profiles of exosomes derived from the poorly and highly metastatic cells were not significantly different.

2.
Cancers (Basel) ; 13(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670497

ABSTRACT

Objective: Cachexia is a complex metabolic syndrome frequently occurring in cancer patients and exacerbated by chemotherapy. In skeletal muscle of cancer hosts, reduced oxidative capacity and low intracellular ATP resulting from abnormal mitochondrial function were described. Methods: The present study aimed at evaluating the ability of the mitochondria-targeted compound SS-31 to counteract muscle wasting and altered metabolism in C26-bearing (C26) mice either receiving chemotherapy (OXFU: oxaliplatin plus 5-fluorouracil) or not. Results: Mitochondrial dysfunction in C26-bearing (C26) mice associated with alterations of cardiolipin fatty acid chains. Selectively targeting cardiolipin with SS-31 partially counteracted body wasting and prevented the reduction of glycolytic myofiber area. SS-31 prompted muscle mitochondrial succinate dehydrogenase (SDH) activity and rescued intracellular ATP levels, although it was unable to counteract mitochondrial protein loss. Progressively increased dosing of SS-31 to C26 OXFU mice showed transient (21 days) beneficial effects on body and muscle weight loss before the onset of a refractory end-stage condition (28 days). At day 21, SS-31 prevented mitochondrial loss and abnormal autophagy/mitophagy. Skeletal muscle, liver and plasma metabolomes were analyzed, showing marked energy and protein metabolism alterations in tumor hosts. SS-31 partially modulated skeletal muscle and liver metabolome, likely reflecting an improved systemic energy homeostasis. Conclusions: The results suggest that targeting mitochondrial function may be as important as targeting protein anabolism/catabolism for the prevention of cancer cachexia. With this in mind, prospective multi-modal therapies including SS-31 are warranted.

3.
Environ Microbiol ; 22(12): 5300-5308, 2020 12.
Article in English | MEDLINE | ID: mdl-32929857

ABSTRACT

Acinetobacter baumannii is an opportunistic pathogen, which has become a rising threat in healthcare facilities worldwide due to increasing antibiotic resistances and optimal adaptation to clinical environments and the human host. We reported in a former publication on the identification of three phopholipases of the phospholipase D (PLD) superfamily in A. baumannii ATCC 19606T acting in concerted manner as virulence factors in Galleria mellonella infection and lung epithelial cell invasion. This study focussed on the function of the three PLDs. A Δpld1-3 mutant was defect in biosynthesis of the phospholipids cardiolipin (CL) and monolysocardiolipin (MLCL), whereas the deletion of pld2 and pld3 abolished the production of MLCL. Complementation of the Δpld1-3 mutant with pld1 restored CL biosynthesis demonstrating that the PLD1 is implicated in CL biosynthesis. Complementation of the Δpld1-3 mutant with either pld2 or pld3 restored MLCL and CL production leading to the conclusion that PLD2 and PLD3 are implicated in CL and MLCL production. Mutant studies revealed that two catalytic motifs are essential for the PLD3-mediated biosynthesis of CL and MLCL. The Δpld1-3 mutant exhibited a decreased colistin and polymyxin B resistance indicating a role of CL in cationic antimicrobial peptides (CAMPs) resistance.


Subject(s)
Acinetobacter baumannii/metabolism , Antimicrobial Cationic Peptides/metabolism , Cardiolipins/biosynthesis , Drug Resistance, Bacterial , Phospholipase D/metabolism , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lysophospholipids/biosynthesis , Mutation , Phospholipase D/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
4.
Front Physiol ; 10: 1344, 2019.
Article in English | MEDLINE | ID: mdl-31736776

ABSTRACT

The reduction of sperm motility and count, or oligoasthenozoospermia, is one of the major causes of reduced fertility or infertility in men. Lipid composition of spermatozoa is important in determining their functional characteristics, in particular on motility, acrosomal exocytosis or fusogenic properties of the sperm. Here we investigated the levels of semen lipids in 11 infertile patients with severe oligoasthenozoospermia and 9 normozoospermic subjects with normal motility values. Sperm polar and neutral lipids were analyzed by thin-layer chromatography (TLC) and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Semen of patients with oligoasthenozoospermia showed a reduction of the degree of fatty acid unsaturation in the phospholipids chains that might affect the membrane fluidity. Furthermore, a significant higher cholesterol sulfate/seminolipid ratio was found in semen of oligoasthenozoospermic patients than in subjects with normal motility values, suggesting a critical role of sulfolipids in semen quality. The results may facilitate the understanding of the role of lipids on male fertility and offer interesting perspectives to find innovative treatments for oligoasthenozoospermia.

5.
Cell Host Microbe ; 24(2): 208-220.e8, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30092198

ABSTRACT

In enteric viral infections, such as those with rotavirus and norovirus, individual viral particles shed in stool are considered the optimal units of fecal-oral transmission. We reveal that rotaviruses and noroviruses are also shed in stool as viral clusters enclosed within vesicles that deliver a high inoculum to the receiving host. Cultured cells non-lytically release rotaviruses and noroviruses inside extracellular vesicles. In addition, stools of infected hosts contain norovirus and rotavirus within vesicles of exosomal or plasma membrane origin. These vesicles remain intact during fecal-oral transmission and thereby transport multiple viral particles collectively to the next host, enhancing both the MOI and disease severity. Vesicle-cloaked viruses are non-negligible populations in stool and have a disproportionately larger contribution to infectivity than free viruses. Our findings indicate that vesicle-cloaked viruses are highly virulent units of fecal-oral transmission and highlight a need for antivirals targeting vesicles and virus clustering.


Subject(s)
Caliciviridae Infections/transmission , Extracellular Vesicles/virology , Feces/virology , Rotavirus Infections/transmission , Animals , Caliciviridae Infections/virology , Child, Preschool , Disease Transmission, Infectious , Exosomes/virology , Female , Humans , Male , Mice, Inbred BALB C , Norovirus/genetics , Norovirus/pathogenicity , Rotavirus/genetics , Rotavirus/pathogenicity , Rotavirus Infections/virology , Swine , Virus Shedding
6.
Oncoimmunology ; 7(2): e1387706, 2018.
Article in English | MEDLINE | ID: mdl-29308314

ABSTRACT

Immunotherapy is effective in metastatic melanoma (MM) but most studies failed in discovering a biomarker predictive of clinical response. Exosomes (Exo) from melanoma cells are detectable in sera of MM patients similarly to those produced by immune cells that control the tumor progression. Here, we investigated by flow-cytometry the levels of Exo from both T-cells and dendritic cells (DCs) in 59 patients with MM treated with IPI and the relative expression of PD-1, CD28 and ICOS as well as CD80 and CD86. We found a significant increment of PD-1 and CD28 expression in patients achieving a clinical response reflected by improvement of both PFS and OS. Furthermore, MM patients receiving IPI who showed extended PFS underwent increased expression of CD80 and CD86 on DC-derived Exo at the end of treatment. These results suggest a possible association of both PD-1 and CD28 up-regulation on immune cell-derived Exo in patients with better clinical response to IPI.

7.
Front Physiol ; 9: 1872, 2018.
Article in English | MEDLINE | ID: mdl-30723418

ABSTRACT

The brine shrimp Artemia is an interesting experimental system for studies of developmental processes. Hatching of dormant cysts gives rise to shrimp larvae called nauplii, characterized by numerous naupliar stages representing the first forms of brine shrimp life cycle. Here combined Thin Layer Chromatography (TLC) and Matrix-Assisted Laser Desorption Ionization-Time-of-Flight/Mass Spectrometry (MALDI-TOF/MS) analyses have been performed to gain information on the lipid profiles of cysts and two naupliar stages. Lipid bands isolated after preparative TLC of the lipid extracts have been analyzed to detect various species of each lipid class; in addition Post-Source Decay (PSD) analyses allowed the identification of phospholipid chains. We compared the relative abundance of various polar and neutral lipid species in the lipid extracts, proving for the first time that during the development of nauplii there is an increase of cardiolipin (CL) and lysophospholipid levels; in parallel, the amount of phosphatidylcholine (PC) decreases. In addition, as regards neutral lipids, we found an increase of diacylglycerols (DAGs) in correspondence of the decrease of triacylglycerols (TAGs). Data reflect the fact that naupliar stages, being an active form of life, are more metabolically active and offer a platform to develop further studies on the importance of lipid metabolic pathways and bioactive lipids during the development.

8.
Sci Rep ; 7(1): 2972, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592862

ABSTRACT

Acidic glycerophospholipids play an important role in determining the resistance of Gram-negative bacteria to stress conditions and antibiotics. Acinetobacter baumannii, an opportunistic human pathogen which is responsible for an increasing number of nosocomial infections, exhibits broad antibiotic resistances. Here lipids of A. baumannii have been analyzed by combined MALDI-TOF/MS and TLC analyses; in addition GC-MS analyses of fatty acid methyl esters released by methanolysis of membrane phospholipids have been performed. The main glycerophospholipids are phosphatidylethanolamine, phosphatidylglycerol, acyl-phosphatidylglycerol and cardiolipin together with monolysocardiolipin, a lysophospholipid only rarely detected in bacterial membranes. The major acyl chains in the phospholipids are C16:0 and C18:1, plus minor amounts of short chain fatty acids. The structures of the cardiolipin and monolysocardiolipin have been elucidated by post source decay mass spectrometry analysis. A large variety of cardiolipin and monolysocardiolipin species were found in A. baumannii. Similar lysocardiolipin levels were found in the two clinical strains A. baumannii ATCC19606T and AYE whereas in the nonpathogenic strain Acinetobacter baylyi ADP1 lysocardiolipin levels were highly reduced.


Subject(s)
Acinetobacter baumannii/chemistry , Cardiolipins/analysis , Lysophospholipids/analysis , Acinetobacter baumannii/metabolism , Cardiolipins/chemistry , Fatty Acids/analysis , Gas Chromatography-Mass Spectrometry , Humans , Lipids/analysis , Lysophospholipids/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
9.
Life (Basel) ; 5(1): 770-82, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25761264

ABSTRACT

The aim of this study was to explore the possibility of using an archaeal microorganism as a host system for expressing mammalian olfactory receptors (ORs). We have selected the archaeon Haloferax volcanii as a cell host system and one of the most extensively investigated OR, namely I7-OR, whose preferred ligands are short-chain aldehydes, such as octanal, heptanal, nonanal. A novel plasmid has been constructed to express the rat I7-OR, fused with a hexahistidine-tag for protein immunodetection. The presence of the recombinant receptor at a membrane level was demonstrated by immunoblot of the membranes isolated from the transgenic archaeal strain. In addition, the lipid composition of archaeonanosomes containing ORs has been characterized in detail by High-Performance Thin-Layer Chromatography (HPTLC) in combination with Matrix-Assisted Laser Desorption Ionization-Time-Of-Flight/Mass Spectrometry (MALDI-TOF/MS) analysis.

10.
Environ Microbiol ; 15(4): 1078-87, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22970819

ABSTRACT

The lipid composition of Halobacillus halophilus was investigated by combined thin-layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analyses of the total lipid extract. Main polar lipids were found to be sulfoquinovosyldiacylglycerol and phosphatidylglycerol, while cardiolipin was a minor lipid together with phosphatidic acid, alanyl-phosphatidylglycerol and two not yet fully identified lipid components. In addition the analyses of residual lipids, associated with denatured proteins after the lipid extraction, revealed the presence of significant amounts of cardiolipin, indicating that it is a not readily extractable phospholipid. Post decay source mass spectrometry analyses allowed the determination of acyl chains of main lipid components. On increasing the culture medium salinity, an increase in the shorter chains and the presence of chain unsaturations were observed. These changes in the lipid core structures might compensate for the increase in packing and rigidity of phospholipid and sulfoglycolipid polar heads in high-salt medium, therefore contributing to the homeostasis of membrane fluidity and permeability in salt stress conditions.


Subject(s)
Halobacillus/metabolism , Membrane Lipids/metabolism , Salinity , Stress, Physiological/physiology , Cardiolipins/metabolism , Chromatography, Thin Layer/methods , Glycolipids/metabolism , Phosphatidylglycerols/metabolism , Phospholipids/metabolism , Sodium Chloride
11.
Archaea ; 2012: 957852, 2012.
Article in English | MEDLINE | ID: mdl-23193375

ABSTRACT

The lipidome of the marine hyperthermophilic archaeon Pyrococcus furiosus was studied by means of combined thin-layer chromatography and MALDI-TOF/MS analyses of the total lipid extract. 80-90% of the major polar lipids were represented by archaeol lipids (diethers) and the remaining part by caldarchaeol lipids (tetraethers). The direct analysis of lipids on chromatography plate showed the presence of the diphytanylglycerol analogues of phosphatidylinositol and phosphatidylglycerol, the N-acetylglucosamine-diphytanylglycerol phosphate plus some caldarchaeol lipids different from those previously described. In addition, evidence for the presence of the dimeric ether lipid cardiolipin is reported, suggesting that cardiolipins are ubiquitous in archaea.


Subject(s)
Lipids/analysis , Lipids/isolation & purification , Pyrococcus furiosus/chemistry , Chromatography, Thin Layer/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
12.
Nanoscale ; 4(20): 6434-41, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-22961248

ABSTRACT

In this work, single walled carbon nanotubes (SWNTs) have been chemically functionalized at their walls with a membrane protein, namely the mutated bacteriorhodopsin D96N, integrated in its native archaeal lipid membrane. The modification of the SWNT walls with the mutant has been carried out in different buffer solutions, at pH 5, 7.5 and 9, to investigate the anchoring process, the typical chemical and physical properties of the component materials being dependent on the pH. The SWNTs modified by interactions with bacteriorhodopsin membrane patches have been characterized by UV-vis steady state, Raman and attenuated total reflection Fourier transform infrared spectroscopy and by atomic force and transmission electron microscopy. The investigation shows that the membrane protein patches wrap the carbon walls by tight chemical interactions undergoing a conformational change; such chemical interactions increase the mechanical strength of the SWNTs and promote charge transfers which p-dope the nano-objects. The functionalization, as well as the SWNT doping, is favoured in acid and basic buffer conditions; such buffers make the nanotube walls more reactive, thus catalysing the anchoring of the membrane protein. The direct electron communication among the materials can be exploited for effectively interfacing the transport properties of carbon nanotubes with both molecular recognition capability and photoactivity of the cell membrane for sensing and photoconversion applications upon integration of the achieved hybrid materials in sensors or photovoltaic devices.


Subject(s)
Bacteriorhodopsins/chemistry , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Bacteriorhodopsins/genetics , Bacteriorhodopsins/isolation & purification , Halobacterium salinarum/chemistry , Hydrogen-Ion Concentration , Mutation , Spectrum Analysis , Surface Properties
13.
PLoS One ; 7(7): e39401, 2012.
Article in English | MEDLINE | ID: mdl-22792173

ABSTRACT

As variance from standard phospholipids of eubacteria and eukaryotes, archaebacterial diether phospholipids contain branched alcohol chains (phytanol) linked to glycerol exclusively with ether bonds. Giant vesicles (GVs) constituted of different species of archaebacterial diether phospholipids and glycolipids (archaeosomes) were prepared by electroformation and observed under a phase contrast and/or fluorescence microscope. Archaebacterial lipids and different mixtures of archaebacterial and standard lipids formed GVs which were analysed for size, yield and ability to adhere to each other due to the mediating effects of certain plasma proteins. GVs constituted of different proportions of archaeal or standard phosphatidylcholine were compared. In nonarchaebacterial GVs (in form of multilamellar lipid vesicles, MLVs) the main transition was detected at T(m) = 34. 2°C with an enthalpy of ΔH = 0.68 kcal/mol, whereas in archaebacterial GVs (MLVs) we did not observe the main phase transition in the range between 10 and 70°C. GVs constituted of archaebacterial lipids were subject to attractive interaction mediated by beta 2 glycoprotein I and by heparin. The adhesion constant of beta 2 glycoprotein I-mediated adhesion determined from adhesion angle between adhered GVs was in the range of 10(-8) J/m(2). In the course of protein mediated adhesion, lateral segregation of the membrane components and presence of thin tubular membranous structures were observed. The ability of archaebacterial diether lipids to combine with standard lipids in bilayers and their compatibility with adhesion-mediating molecules offer further evidence that archaebacterial lipids are appropriate for the design of drug carriers.


Subject(s)
Archaea/physiology , Membrane Fusion , Proteins/metabolism , Glycolipids/chemistry , Glycolipids/metabolism , Liposomes/chemistry , Liposomes/metabolism , Membranes/chemistry , Membranes/metabolism , Phospholipids/chemistry , Phospholipids/metabolism
14.
Protein Expr Purif ; 84(1): 73-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22580037

ABSTRACT

Squarebop I bacteriorhodopsin is a light-activated proton pump present in the membranes of the archeon Haloquadratum walsbyi, a square-shaped organism representing 50-60% of microbial population in the crystallizer ponds of the coastal salterns. Here we describe: (1) the operating mode of a bioreactor designed to concentrate the saltern biomass through a microfiltration process based on polyethersulfone hollow fibers; (2) the isolation of Squarebop I bacteriorhodopsin from solubilized biomass by means of a single chromatographic step; (3) tightly bound lipids to the isolated and purified protein as revealed by MALDI-TOF/MS analysis; (4) the photoactivity of Squarebop I bacteriorhodopsin isolated from environmental samples by flash spectroscopy. Yield of the isolation process is 150 µg of Squarebop I bacteriorhodopsin from 1l of 25-fold concentrated biomass. The possibility of using the concentrated biomass of salterns, as renewable resource for the isolation of functional bacteriorhodopsin and possibly other valuable bioproducts, is briefly discussed.


Subject(s)
Bacteriorhodopsins/chemistry , Bacteriorhodopsins/isolation & purification , Biomass , Halobacteriaceae/chemistry , Environment , Filtration , Lipids/chemistry , Seawater
15.
Biochim Biophys Acta ; 1818(5): 1365-73, 2012 May.
Article in English | MEDLINE | ID: mdl-22366205

ABSTRACT

The lipidome of two extremely haloalkaliphilic archaea, Natronococcus occultus and Natronococcus amylolyticus, has been examined by means of combined thin-layer chromatography and MALDI-TOF/MS analyses. The detailed investigation of lipid profiles has confirmed the presence of i) ether lipid phosphatidylglycerol and phosphatidylglycerophosphate methyl ester as main lipid components, ii) both C(20) and C(25) isopranoid chains in the lipid core and yielded new findings on membrane lipids of these unusual organisms. Besides some novel minor or trace phospholipids and glycolipids, data indicate the presence of ether lipid cardiolipin variants constituted by different combinations of C(20) and C(25) isopranoid chains, never before described in archaea. The role of C(25) isopranoid chains in the adaptation to high pH gradients in the presence of very high salt concentrations is discussed.


Subject(s)
Adaptation, Physiological/physiology , Cardiolipins , Natronococcus , Cardiolipins/chemistry , Cardiolipins/metabolism , Hydrogen-Ion Concentration , Natronococcus/chemistry , Natronococcus/metabolism , Phospholipid Ethers/chemistry , Phospholipid Ethers/metabolism
16.
J Bioenerg Biomembr ; 44(1): 51-60, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22318357

ABSTRACT

The GL15 glioblastoma cell line undergoes viability loss upon treatment with bromopyruvate. The biochemical mechanisms triggered by the antiglycolytic agent indicate the activation of an autophagic pathway. Acridine orange stains acidic intracellular vesicles already 60 min after bromopyruvate treatment, whereas autophagosomes engulfing electron dense material are well evidenced 18 h later. The autophagic process is accompanied by the expression of the early autophagosomal marker Atg5 and by LC3-II formation, a late biochemical marker associated with autophagosomes. In agreement with the autophagic route activation, the inhibitory and the activator Akt and ERK signaling pathways are depressed and enhanced, respectively. In spite of the energetic collapse suffered by bromopyruvate-treated cells, MALDI-TOF mass spectrometry lipid analysis does not evidence a decrease of the major phospholipids, in accordance with the need of phospholipids for autophagosomal membranes biogenesis. Contrarily, mitochondrial cardiolipin decreases, accompanied by monolyso-cardiolipin formation and complete cytochrome c degradation, events that could target mitochondria to autophagy. However, in our experimental conditions cytochrome c degradation seems to be independent of the autophagic process.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Autophagy/drug effects , Cardiolipins/metabolism , Cell Survival/drug effects , Glioblastoma/metabolism , Pyruvates/pharmacology , Acridine Orange , Autophagy-Related Protein 5 , Blotting, Western , Cell Line, Tumor , Cytoplasmic Vesicles/metabolism , Humans , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Photochem Photobiol ; 88(3): 690-700, 2012.
Article in English | MEDLINE | ID: mdl-22248212

ABSTRACT

We have isolated and characterized the light-driven proton pump Bop I from the ultrathin square archaeon Haloquadratum walsbyi, the most abundant component of the dense microbial community inhabiting hypersaline environments. The disruption of cells by hypo-osmotic shock yielded Bop I retinal protein highly enriched membranes, which contain one main 27 kDa protein band together with a high content of the carotenoid bacterioruberin. Light-induced pH changes were observed in suspensions of Bop I retinal protein-enriched membranes under sustained illumination. Solubilization of H. walsbyi cells with Triton X-100, followed by phenyl-Sepharose chromatography, resulted in isolation of two purified Bop I retinal protein bands; mass spectrometry analysis revealed that the Bop I was present as only protein in both the bands. The study of light/dark adaptations, M-decay kinetics, responses to titration with alkali in the dark and endogenous lipid compositions of the two Bop I retinal protein bands showed functional differences that could be attributed to different protein aggregation states. Proton-pumping activity of Bop I during the photocycle was observed in liposomes constituted of archaeal lipids. Similarities and differences of Bop I with other archaeal proton-pumping retinal proteins will be discussed.


Subject(s)
Halobacteriaceae/radiation effects , Light , Proton Pumps/metabolism , Base Sequence , Chromatography, Gel , Chromatography, High Pressure Liquid , Circular Dichroism , DNA Primers , Electrophoresis, Polyacrylamide Gel , Halobacteriaceae/metabolism , Hydrogen-Ion Concentration , Kinetics , Real-Time Polymerase Chain Reaction , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
18.
Lipids ; 45(7): 593-602, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20512424

ABSTRACT

The use of the matrix 9-aminoacridine has been recently introduced in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of both anionic and cationic phospholipids. In the present study, we take advantage of this technique to analyze the lipids of porcine olfactory mucosa and a membrane fraction enriched in cilia. Thin-layer chromatography (TLC) and (31)P-NMR analyses of the lipid extracts were also performed in parallel. MALDI-TOF-MS allowed the identification of lipid classes in the total lipid extract and individual lipids present in the main TLC bands. The comparison between the composition of the two lipid extracts showed that: (1) cardiolipin, present in small amount in the whole olfactory mucosa lipid extract, was absent in the extract of membranes enriched in olfactory cilia, (2) phosphatidylethanolamine species were less abundant in ciliary than in whole epithelial membranes, (3) sulfoglycosphingolipids were detected in the lipid extract of ciliary membranes, but not in that of epithelial membranes. Our results indicate that the lipid pattern of ciliary membranes is different from that of whole-tissue membranes and suggest that olfactory receptors require a specific lipid environment for their functioning.


Subject(s)
Epithelial Cells/chemistry , Lipids/analysis , Olfactory Mucosa/chemistry , Aminacrine/metabolism , Animals , Cilia/chemistry , Cilia/metabolism , Epithelial Cells/metabolism , Lipids/chemistry , Olfactory Mucosa/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Swine
19.
Biochim Biophys Acta ; 1798(3): 681-7, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20093104

ABSTRACT

Rat liver mitochondria were isolated in parallel in two different isolation buffers: a standard buffer containing mannitol/sucrose and a nearly physiological KCl based solution. The two different organelle preparations were comparatively characterized by respiratory activity, heme content, microsomal and Golgi contamination, electron microscopy and lipid analyses. The substitution of saccharides with KCl in the isolation buffer does not induce the formation of mitoplasts or disruption of mitochondria. Mitochondria isolated in KCl buffer are coupled and able to maintain a stable transmembrane charge separation. A number of biochemical and functional differences between the two organelle preparations are described; in particular KCl mitochondria exhibit lower cardiolipin content and smaller intracristal compartments in comparison with the standard mitochondrial preparation.


Subject(s)
Cardiolipins/metabolism , Isotonic Solutions/pharmacology , Mitochondria, Liver/metabolism , Organelle Shape/drug effects , Potassium Chloride/pharmacology , Animals , Buffers , Cell Respiration/drug effects , Chromatography, Thin Layer , Cytochrome Reductases/metabolism , Heme/metabolism , Lipids/analysis , Mitochondria, Liver/drug effects , Mitochondria, Liver/enzymology , Mitochondria, Liver/ultrastructure , NADP/metabolism , Oxygen Consumption/drug effects , Rats , Spectrometry, Mass, Electrospray Ionization
20.
J Hazard Mater ; 175(1-3): 1096-100, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-19913995

ABSTRACT

The response of olfactory sensory neurons to TNT and RDX as well as to some volatile organic compounds present in the vapors of antipersonnel landmines has been studied both in the pig and in the rat. GC/MS analyses of different plastic components of six different kinds of landmines were performed in order to identify the components of the "perfume" of mines. Studies on rat olfactory mucosa were carried out with electro-olfactogram and calcium imaging techniques, while changes in the cyclic adenosine monophosphate (cAMP) levels following exposure to odorants and explosives were used as a criterion to evaluate the interaction of TNT and RDX with olfactory receptors in a preparation of isolated pig olfactory cilia. These studies indicate that chemical compounds associated with explosives and explosive devices can activate mammalian olfactory receptors.


Subject(s)
Explosive Agents/analysis , Olfactory Receptor Neurons/metabolism , Animals , Calcium/metabolism , Cyclic AMP/metabolism , Explosive Agents/metabolism , Female , Gas Chromatography-Mass Spectrometry/methods , Male , Models, Chemical , Models, Theoretical , Neurons, Afferent/metabolism , Olfactory Mucosa/metabolism , Plastics , Rats , Rats, Sprague-Dawley , Receptors, Odorant/analysis , Sensory Receptor Cells , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...