Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Front Psychiatry ; 13: 969674, 2022.
Article in English | MEDLINE | ID: mdl-36506430

ABSTRACT

Background: Assessing the role of oxytocin (OT) in the regulation of social interaction is a promising area that opens up new opportunities for studying the mechanisms of developing autism spectrum disorders (ASD). Aim: To assess the correlation between the salivary OT level and age-related and psychopathological symptoms of children with intellectual disability (ID) and ASD. Methods: We used the clinical and psychopathological method to assess the signs of ASD based on International Classification of Diseases (ICD-10), the severity of ASD was specified by the selected Russian type version "Childhood Autism Rating Scale" (CARS). Patients of both groups had an IQ score below 70 points. Results: The median and interquartile range of salivary OT levels in patients with ID and ASD were 23.897 [14.260-59.643] pg/mL, and in the group ID without ASD - Me = 50.896 [33.502-83.774] pg/mL (p = 0.001). The severity of ASD on the CARS scale Me = 51.5 [40.75-56.0] score in the group ID with ASD, and in the group ID without ASD-at the level of Me = 32 [27.0-38.0] points (p < 0.001). According to the results of correlation-regression analysis in the main group, a direct correlation was established between salivary OT level and a high degree of severity of ASD Rho = 0.435 (p = 0.005). There was no correlation between the salivary OT level and intellectual development in the group ID with ASD, Rho = 0.013 (p = 0.941) and we have found a relationship between oxytocin and intellectual development in the group ID without ASD, Rho = 0.297 (p = 0.005). There was no correlation between salivary OT and age, ASD and age. Conclusion: The results of this study indicate that patients in the group ID with ASD demonstrated a lower level of salivary OT concentration and a direct relationship between the maximum values of this indicator and the severity of autistic disorders, in contrast to patients in the group ID without ASD.

2.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769018

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a devastating neurodegenerative disorder. In recent years, attention of researchers has increasingly been focused on studying the role of brain insulin resistance (BIR) in the AD pathogenesis. Neuroinflammation makes a significant contribution to the BIR due to the activation of NLRP3 inflammasome. This study was devoted to the understanding of the potential therapeutic roles of the NLRP3 inflammasome in neurodegeneration occurring concomitant with BIR and its contribution to the progression of emotional disorders. METHODS: To test the impact of innate immune signaling on the changes induced by Aß1-42 injection, we analyzed animals carrying a genetic deletion of the Nlrp3 gene. Thus, we studied the role of NLRP3 inflammasomes in health and neurodegeneration in maintaining brain insulin signaling using behavioral, electrophysiological approaches, immunohistochemistry, ELISA and real-time PCR. RESULTS: We revealed that NLRP3 inflammasomes are required for insulin-dependent glucose transport in the brain and memory consolidation. Conclusions NLRP3 knockout protects mice against the development of BIR: Taken together, our data reveal the protective role of Nlrp3 deletion in the regulation of fear memory and the development of Aß-induced insulin resistance, providing a novel target for the clinical treatment of this disorder.


Subject(s)
Alzheimer Disease/metabolism , Inflammasomes/metabolism , Insulin Resistance/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroinflammatory Diseases/metabolism
3.
Biomedicines ; 9(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34572278

ABSTRACT

Early life stress (ELS) causes long-lasting changes in brain plasticity induced by the exposure to stress factors acting prenatally or in the early postnatal ontogenesis due to hyperactivation of hypothalamic-pituitary-adrenal axis and sympathetic nervous system, development of neuroinflammation, aberrant neurogenesis and angiogenesis, and significant alterations in brain metabolism that lead to neurological deficits and higher susceptibility to development of brain disorders later in the life. As a key component of complex pathogenesis, ELS-mediated changes in brain metabolism associate with development of mitochondrial dysfunction, loss of appropriate mitochondria quality control and mitochondrial dynamics, deregulation of metabolic reprogramming. These mechanisms are particularly critical for maintaining the pool and development of brain cells within neurogenic and angiogenic niches. In this review, we focus on brain mitochondria and energy metabolism related to tightly coupled neurogenic and angiogenic events in healthy and ELS-affected brain, and new opportunities to develop efficient therapeutic strategies aimed to restore brain metabolism and reduce ELS-induced impairments of brain plasticity.

4.
Biochemistry (Mosc) ; 86(6): 746-760, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34225598

ABSTRACT

Blood-brain barrier (BBB) is a structural and functional element of the neurovascular unit (NVU), which includes cells of neuronal, glial, and endothelial nature. The main functions of NVU include maintenance of the control of metabolism and chemical homeostasis in the brain tissue, ensuring adequate blood flow in active regions, regulation of neuroplasticity processes, which is realized through intercellular interactions under normal conditions, under stress, in neurodegeneration, neuroinfection, and neurodevelopmental diseases. Current versions of the BBB and NVU models, static and dynamic, have significantly expanded research capabilities, but a number of issues remain unresolved, in particular, personification of the models for a patient. In addition, application of both static and dynamic models has an important problem associated with the difficulty in reproducing pathophysiological mechanisms responsible for the damage of the structural and functional integrity of the barrier in the diseases of the central nervous system. More knowledge on the cellular and molecular mechanisms of BBB and NVU damage in pathology is required to solve this problem. This review discusses current state of the cellular and molecular mechanisms that control BBB permeability, pathobiochemical mechanisms and manifestations of BBB breakdown in stress and neurodegenerative diseases, as well as the problems and prospects of creating in vitro BBB and NVU models for translational studies in neurology and neuropharmacology. Deciphering BBB (patho)physiology will open up new opportunities for further development in the related areas of medicine such as regenerative medicine, neuropharmacology, and neurorehabilitation.


Subject(s)
Blood-Brain Barrier/physiopathology , Neurodegenerative Diseases/physiopathology , Stress, Psychological/physiopathology , Blood-Brain Barrier/metabolism , Humans , Neurodegenerative Diseases/metabolism , Stress, Psychological/metabolism
5.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925080

ABSTRACT

Pathophysiology of chronic neurodegeneration is mainly based on complex mechanisms related to aberrant signal transduction, excitation/inhibition imbalance, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein misfolding, local insulin resistance and metabolic dysfunction, excessive cell death, development of glia-supported neuroinflammation, and failure of neurogenesis. These mechanisms tightly associate with dramatic alterations in the structure and activity of the neurovascular unit (NVU) and the blood-brain barrier (BBB). NVU is an ensemble of brain cells (brain microvessel endothelial cells (BMECs), astrocytes, pericytes, neurons, and microglia) serving for the adjustment of cell-to-cell interactions, metabolic coupling, local microcirculation, and neuronal excitability to the actual needs of the brain. The part of the NVU known as a BBB controls selective access of endogenous and exogenous molecules to the brain tissue and efflux of metabolites to the blood, thereby providing maintenance of brain chemical homeostasis critical for efficient signal transduction and brain plasticity. In Alzheimer's disease, mitochondria are the target organelles for amyloid-induced neurodegeneration and alterations in NVU metabolic coupling or BBB breakdown. In this review we discuss understandings on mitochondria-driven NVU and BBB dysfunction, and how it might be studied in current and prospective NVU/BBB in vitro models for finding new approaches for the efficient pharmacotherapy of Alzheimer's disease.


Subject(s)
Blood-Brain Barrier/physiopathology , Mitochondria/physiology , Models, Neurological , Nerve Degeneration/etiology , Nerve Degeneration/physiopathology , Alzheimer Disease/etiology , Alzheimer Disease/physiopathology , Animals , DNA Damage , DNA, Mitochondrial/metabolism , Humans , In Vitro Techniques , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/physiopathology , Neurons/physiology , Reactive Oxygen Species/metabolism
6.
Rev Neurosci ; 32(2): 131-142, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33550784

ABSTRACT

Early life stress (ELS) is one of the most critical factors that could modify brain plasticity, memory and learning abilities, behavioral reactions, and emotional response in adulthood leading to development of different mental disorders. Prenatal and early postnatal periods appear to be the most sensitive periods of brain development in mammals, thereby action of various factors at these stages of brain development might result in neurodegeneration, memory impairment, and mood disorders at later periods of life. Deciphering the processes underlying aberrant neurogenesis, synaptogenesis, and cerebral angiogenesis as well as deeper understanding the effects of ELS on brain development will provide novel approaches to prevent or to cure psychiatric and neurological deficits caused by stressful conditions at the earliest stages of ontogenesis. Neuropeptide oxytocin serves as an amnesic, anti-stress, pro-angiogenic, and neurogenesis-controlling molecule contributing to dramatic changes in brain plasticity in ELS. In the current review, we summarize recent data on molecular mechanisms of ELS-driven changes in brain plasticity with the particular focus on oxytocin-mediated effects on neurogenesis and angiogenesis, memory establishment, and forgetting.


Subject(s)
Adverse Childhood Experiences , Adult , Animals , Emotions , Female , Humans , Neurogenesis , Neuronal Plasticity , Pregnancy , Stress, Psychological
7.
Brain Res ; 1752: 147220, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33358726

ABSTRACT

Neuroinflammation has been classified as a trigger of behavioral alterations and cognitive impairments in many neurological conditions, including Alzheimer's disease, major depression, anxiety and others. Regardless of the cause of neuroinflammation, key molecules, which sense neuropathological conditions, are intracellular multiprotein signaling inflammasomes. Increasing evidence shows that the inflammatory response, mediated by activated nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasomes, is associated with the onset and progression of a wide range of diseases of the CNS. However, whether the NLRP3 inflammasome in the CNS is involved in the learning, development of anxiety and adult neurogenesis remains elusive. Therefore, the present study was designed to assess NLRP3 inflammasome contribution in anxiety and reveal its potential involvement in the experimental acquisition of fear responses and hippocampal neurogenesis. Behavioral, immunohistochemical and electrophysiological alterations were measured to evaluate role of neuroinflammation in the limbic system of mice. In this study, we describe interrelated neurophysiological mechanisms, which culminate in absence of NLRP3 inflammasome in young 4 months mice. These include the following: anxious behavior and deterioration in learning and memory of fear conditioning; impairment of adult neurogenesis; reduction and altered morphology of astrocytes in the brain; hyperexcitability in basolateral amygdala (BLA); impaired activation in axons of pyramidal cells of CA1 hippocampal zone in NLRP3 KO mice particularly via the Schaffer collateral pathway; and impaired synaptic transduction in pyramidal cells mediated by an embarrassment of neurotransmitter release from presynaptic site in CA3 hippocampal zone. The present study has demonstrated the novel findings that basal level of NLRP3 inflammasome in the brain of young mice is required for conditioning-induced plasticity in the ventral hippocampus and the basolateral amygdala. The deletion of NLRP3 impair synaptic transduction and caused anxiety-like behavior and labored fear learning, suggesting that low grade inflammation, mediated by NLRP3 expression, play a key role in memory consolidation.


Subject(s)
Anxiety/physiopathology , Encephalitis/physiopathology , Hippocampus/physiopathology , Inflammasomes/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Animals , Male , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroglia/metabolism , Neurons/metabolism
8.
Front Immunol ; 11: 585294, 2020.
Article in English | MEDLINE | ID: mdl-33304350

ABSTRACT

Ectoenzyme and receptor BST-1/CD157 has been considered as a key molecule involved in the regulation of functional activity of cells in various tissues and organs. It is commonly accepted that CD157 catalyzes NAD+ hydrolysis and acts as a component of integrin adhesion receptor complex. Such properties are important for the regulatory role of CD157 in neuronal and glial cells: in addition to recently discovered role in the regulation of emotions, motor functions, and social behavior, CD157 might serve as an important component of innate immune reactions in the central nervous system. Activation of innate immune system in the brain occurs in response to infectious agents as well as in brain injury and neurodegeneration. As an example, in microglial cells, association of CD157 with CD11b/CD18 complex drives reactive gliosis and neuroinflammation evident in brain ischemia, chronic neurodegeneration, and aging. There are various non-substrate ligands of CD157 belonging to the family of extracellular matrix proteins (fibronectin, collagen I, finbrinogen, and laminin) whose activity is required for controlling cell adhesion and migration. Therefore, CD157 could control structural and functional integrity of the blood-brain barrier and barriergenesis. On the other hand, contribution of CD157 to the regulation of brain development is rather possible since in the embryonic brain, CD157 expression is very high, whereas in the adult brain, CD157 is expressed on neural stem cells and, presumably, is involved in the neurogenesis. Besides, CD157 could mediate astrocytes' action on neural stem and progenitor cells within neurogenic niches. In this review we will summarize how CD157 may affect brain plasticity acting as a molecule at the crossroad of neurogenesis, cerebral angiogenesis, and immune regulation.


Subject(s)
ADP-ribosyl Cyclase/immunology , Antigens, CD/immunology , Brain/immunology , Brain/physiopathology , Neuronal Plasticity/immunology , Animals , GPI-Linked Proteins/immunology , Humans
9.
J Neurosci Methods ; 335: 108616, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32007483

ABSTRACT

Virtual reality (VR) and augmented reality (AR) have become valuable tools to study brains and behaviors resulting in development of new methods of diagnostics and treatment. Neurodegenerаtion is one of the best examples demonstrating efficacy of VR/АR technologies in modern neurology. Development of novel VR systems for rodents and combination of VR tools with up-to-date imaging techniques (i.e. MRI, imaging of neural networks etc.), brain electrophysiology (EEG, patch-clamp), precise analytics (microdialysis) allowed implementing of VR protocols into the animal neurobiology to study brain plasticity, sensorimotor integration, spatial navigation, memory, and decision-making. VR/AR for rodents is а young field of experimental neuroscience and has already provided more consistent testing conditions, less human-animal interaction, opportunities to use a wider variety of experimental parameters. Here we discuss present and future perspectives of using VR/AR to assess brain plasticity, neurogenesis and complex behavior in rodent and human study, and their advantages for translational neuroscience.


Subject(s)
Virtual Reality , Animals , Memory , Neuronal Plasticity , Rodentia , User-Computer Interface
10.
Rev Neurosci ; 30(8): 807-820, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31152644

ABSTRACT

The excitation/inhibition (E/I) balance controls the synaptic inputs to prevent the inappropriate responses of neurons to input strength, and is required to restore the initial pattern of network activity. Various neurotransmitters affect synaptic plasticity within neural networks via the modulation of neuronal E/I balance in the developing and adult brain. Less is known about the role of E/I balance in the control of the development of the neural stem and progenitor cells in the course of neurogenesis and gliogenesis. Recent findings suggest that neural stem and progenitor cells appear to be the target for the action of GABA within the neurogenic or oligovascular niches. The same might be true for the role of neuropeptides (i.e. oxytocin) in neurogenic niches. This review covers current understanding of the role of E/I balance in the regulation of neuroplasticity associated with social behavior in normal brain, and in neurodevelopmental and neurodegenerative diseases. Further studies are required to decipher the GABA-mediated regulation of postnatal neurogenesis and synaptic integration of newly-born neurons as a potential target for the treatment of brain diseases.


Subject(s)
Neurodegenerative Diseases/etiology , Neurodevelopmental Disorders/etiology , Neurogenesis , Synaptic Potentials , Animals , Brain/growth & development , Brain/metabolism , Brain/physiology , Humans , Neurodegenerative Diseases/physiopathology , Neurodevelopmental Disorders/physiopathology
11.
Adv Exp Med Biol ; 1147: 147-166, 2019.
Article in English | MEDLINE | ID: mdl-31147877

ABSTRACT

Pericytes in the central nervous system attract growing attention of neurobiologists because of obvious opportunities to use them as target cells in numerous brain diseases. Functional activity of pericytes includes control of integrity of the endothelial cell layer, regeneration of vascular cells, and regulation of microcirculation. Pericytes are well integrated in the so-called neurovascular unit (NVU) serving as a platform for effective communications of neurons, astrocytes, endothelial cells, and pericytes. Contribution of pericytes to the establishment and maintaining the structural and functional integrity of blood-brain barrier is confirmed in numerous experimental and clinical studies. The review covers current understandings on the role of pericytes in molecular pathogenesis of NVU/BBB dysfunction in Alzheimer's disease with the special focus on the development of cerebral amyloid angiopathy, deregulation of cerebral angiogenesis, and progression of BBB breakdown seen in Alzheimer's type neurodegeneration.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Pericytes , Astrocytes , Blood-Brain Barrier , Brain , Humans
12.
Front Physiol ; 9: 1656, 2018.
Article in English | MEDLINE | ID: mdl-30534080

ABSTRACT

Adipose tissue is recognized as an important organ with metabolic, regulatory, and plastic roles. Adipose tissue-derived stem cells (ASCs) with self-renewal properties localize in the stromal vascular fraction (SVF) being present in a vascular niche, thereby, contributing to local regulation of angiogenesis and vessel remodeling. In the past decades, ASCs have attracted much attention from biologists and bioengineers, particularly, because of their multilineage differentiation potential, strong proliferation, and migration abilities in vitro and high resistance to oxidative stress and senescence. Current data suggest that the SVF serves as an important source of endothelial progenitors, endothelial cells, and pericytes, thereby, contributing to vessel remodeling and growth. In addition, ASCs demonstrate intriguing metabolic and interlineage plasticity, which makes them good candidates for creating regenerative therapeutic protocols, in vitro tissue models and microphysiological systems, and tissue-on-chip devices for diagnostic and regeneration-supporting purposes. This review covers recent achievements in understanding the metabolic activity within the SVF niches (lactate and NAD+ metabolism), which is critical for maintaining the pool of ASCs, and discloses their pro-angiogenic potential, particularly, in the complex therapy of cardiovascular and cerebrovascular diseases.

13.
Neuropeptides ; 72: 1-11, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30287150

ABSTRACT

Social recognition is the sensitive domains of complex behavior critical for identification, interpretation and storage of socially meaningful information. Social recognition develops throughout childhood and adolescent, and is affected in a wide variety of psychiatric disorders. Recently, new data appeared on the molecular mechanisms of these processes, particularly, the excitatory-inhibitory (E/I) ratio which is modified during development, and then E/I balance is established in the adult brain. While E/I imbalance has been proposed as a mechanism for schizophrenia, it also seems to be the common mechanism in autism spectrum disorder (ASD). In addition, there is a strong suggestion that the oxytocinergic system is related to GABA-mediated E/I control in the context of brain socialization. In this review, we attempt to summarize the underpinning molecular mechanisms of E/I balance and its imbalance, and related biomarkers in the brain in healthiness and pathology. In addition, because there are increasing interest on oxytocin in the social neuroscience field, we will pay intensive attention to the role of oxytocin in maintaining E/I balance from the viewpoint of its effects on improving social impairment in psychiatric diseases, especially in ASD.


Subject(s)
Brain/physiology , Oxytocin/physiology , Recognition, Psychology/physiology , Social Behavior , Animals , Humans
14.
Front Behav Neurosci ; 12: 195, 2018.
Article in English | MEDLINE | ID: mdl-30210321

ABSTRACT

Face recognition is an important index in the formation of social cognition and neurodevelopment in humans. Changes in face perception and memory are connected with altered sociability, which is a symptom of numerous brain conditions including autism spectrum disorder (ASD). Various brain regions and neuropeptides are implicated in face processing. The neuropeptide oxytocin (OT) plays an important role in various social behaviors, including face and emotion recognition. Nasal OT administration is a promising new therapy that can address social cognition deficits in individuals with ASD. New instrumental neurotechnologies enable the assessment of brain region activation during specific social tasks and therapies, and can characterize the involvement of genes and peptides in impaired neurodevelopment. The present review sought to discuss some of the mechanisms of the face distinguishing process, the ability of OT to modulate social cognition, as well as new perspectives and technologies for research and rehabilitation of face recognition.

15.
Front Aging Neurosci ; 10: 234, 2018.
Article in English | MEDLINE | ID: mdl-30127733

ABSTRACT

Blood-brain barrier (BBB) modeling in vitro is a huge area of research covering study of intercellular communications and development of BBB, establishment of specific properties that provide controlled permeability of the barrier. Current approaches in designing new BBB models include development of new (bio) scaffolds supporting barriergenesis/angiogenesis and BBB integrity; use of methods enabling modulation of BBB permeability; application of modern analytical techniques for screening the transfer of metabolites, bio-macromolecules, selected drug candidates and drug delivery systems; establishment of 3D models; application of microfluidic technologies; reconstruction of microphysiological systems with the barrier constituents. Acceptance of idea that BBB in vitro models should resemble real functional activity of the barrier in different periods of ontogenesis and in different (patho) physiological conditions leads to proposal that establishment of BBB in vitro model with alterations specific for aging brain is one of current challenges in neurosciences and bioengineering. Vascular dysfunction in the aging brain often associates with leaky BBB, alterations in perivascular microenvironment, neuroinflammation, perturbed neuronal and astroglial activity within the neurovascular unit, impairments in neurogenic niches where microvascular scaffold plays a key regulatory role. The review article is focused on aging-related alterations in BBB and current approaches to development of "aging" BBB models in vitro.

16.
Front Aging Neurosci ; 9: 245, 2017.
Article in English | MEDLINE | ID: mdl-28798684

ABSTRACT

Impairment of hippocampal adult neurogenesis in aging or degenerating brain is a well-known phenomenon caused by the shortage of brain stem cell pool, alterations in the local microenvironment within the neurogenic niches, or deregulation of stem cell development. Environmental enrichment (EE) has been proposed as a potent tool to restore brain functions, to prevent aging-associated neurodegeneration, and to cure neuronal deficits seen in neurodevelopmental and neurodegenerative disorders. Here, we report our data on the effects of environmental enrichment on hippocampal neurogenesis in vivo and neurosphere-forming capacity of hippocampal stem/progenitor cells in vitro. Two models - Alzheimer's type of neurodegeneration and physiological brain aging - were chosen for the comparative analysis of EE effects. We found that environmental enrichment greatly affects the expression of markers specific for stem cells, progenitor cells and differentiated neurons (Pax6, Ngn2, NeuroD1, NeuN) in the hippocampus of young adult rats or rats with Alzheimer's disease (AD) model but less efficiently in aged animals. Application of time-lag mathematical model for the analysis of impedance traces obtained in real-time monitoring of cell proliferation in vitro revealed that EE could restore neurosphere-forming capacity of hippocampal stem/progenitor cells more efficiently in young adult animals (fourfold greater in the control group comparing to the AD model group) but not in the aged rats (no positive effect of environmental enrichment at all). In accordance with the results obtained in vivo, EE was almost ineffective in the recovery of hippocampal neurogenic reserve in vitro in aged, but not in amyloid-treated or young adult, rats. Therefore, EE-based neuroprotective strategies effective in Aß-affected brain could not be directly extrapolated to aged brain.

17.
Front Neurosci ; 11: 266, 2017.
Article in English | MEDLINE | ID: mdl-28566999

ABSTRACT

Communication consists of social interaction, recognition, and information transmission. Communication ability is the most affected component in children with autism spectrum disorder (ASD). Recently, we reported that the CD157/BST1 gene is associated with ASD, and that CD157 knockout (Cd157-/-) mice display severe impairments in social behavior that are improved by oxytocin (OXT) treatment. Here, we sought to determine whether Cd157-/- mice can be used as a suitable model for communication deficits by measuring ultrasonic vocalizations (USVs), especially in the early developmental stage. Call number produced in pups due to isolation from dams was higher at postnatal day (PND) 3 in knockout pups than wild-type mice, but was lower at PNDs 7 and 10. Pups of both genotypes had similarly limited voice repertoires at PND 3. Later on, at PNDs 7 and 10, while wild-type pups emitted USVs consisting of six different syllable types, knockout pups vocalized with only two types. This developmental impairment in USV emission was rescued within 30 min by intraperitoneal OXT treatment, but quickly returned to control levels after 120 min, showing a transient effect of OXT. USV impairment was partially observed in Cd157+/- heterozygous mice, but not in Cd157-/- adult male mice examined while under courtship. These results demonstrate that CD157 gene deletion results in social communication insufficiencies, and suggests that CD157 is likely involved in acoustic communication. This unique OXT-sensitive developmental delay in Cd157-/- pups may be a useful model of communicative interaction impairment in ASD.

18.
Rev Neurosci ; 28(4): 397-415, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28195555

ABSTRACT

Adult neurogenesis is one of the most important mechanisms contributing to brain development, learning, and memory. Alterations in neurogenesis underlie a wide spectrum of brain diseases. Neurogenesis takes place in highly specialized neurogenic niches. The concept of neurogenic niches is becoming widely accepted due to growing evidence of the important role of the microenvironment established in the close vicinity to stem cells in order to provide adequate control of cell proliferation, differentiation, and apoptosis. Neurogenic niches represent the platform for tight integration of neurogenesis and angiogenesis supported by specific properties of cerebral microvessel endothelial cells contributing to establishment of partially compromised blood-brain barrier (BBB) for the adjustment of local conditions to the current metabolic needs of stem and progenitor cells. Here, we review up-to-date data on microvascular dynamics in activity-dependent neurogenesis, specific properties of BBB in neurogenic niches, endothelial-driven mechanisms of clonogenic activity, and future perspectives for reconstructing the neurogenic niches in vitro.


Subject(s)
Blood-Brain Barrier/cytology , Neurogenesis , Animals , Blood-Brain Barrier/growth & development , Blood-Brain Barrier/physiology , Humans , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Stem Cell Niche
19.
Rev Neurosci ; 27(4): 365-76, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26641963

ABSTRACT

Patch clamp is a golden standard for studying (patho)physiological processes affecting membranes of excitable cells. This method is rather labor-intensive and requires well-trained professionals and long-lasting experimental procedures; therefore, accurate designing of the experiments with patch clamp methodology as well as collecting and analyzing the data obtained are essential for the widely spread implementation of this method into the routine research practice. Recently, the method became very prospective not only for the characterization of single excitable cells but also for the detailed assessment of intercellular communication, i.e. within the neurovascular unit. Here, we analyze the main advantages and disadvantages of patch clamp method, with special focus on the tendencies in clamping technique improvement with the help of patch electrodes for the assessment of intercellular communication in the brain.


Subject(s)
Brain/physiology , Cell Communication/physiology , Electrophysiology , Neurovascular Coupling/physiology , Action Potentials/physiology , Animals , Electrophysiology/methods , Humans , Patch-Clamp Techniques/methods
20.
Front Physiol ; 6: 361, 2015.
Article in English | MEDLINE | ID: mdl-26696896

ABSTRACT

Alzheimer's type of neurodegeneration dramatically affects H2S and NO synthesis and interactions in the brain, which results in dysregulated vasomotor function, brain tissue hypoperfusion and hypoxia, development of perivascular inflammation, promotion of Aß deposition, and impairment of neurogenesis/angiogenesis. H2S- and NO-signaling pathways have been described to offer protection against Alzheimer's amyloid vasculopathy and neurodegeneration. This review describes recent developments of the increasing relevance of H2S and NO in Alzheimer's disease (AD). More studies are however needed to fully determine their potential use as therapeutic targets in Alzheimer's and other forms of vascular dementia.

SELECTION OF CITATIONS
SEARCH DETAIL
...