Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 15973, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354179

ABSTRACT

For cardiovascular disease prevention, statins alone or combined with ezetimibe have been recommended to achieve low-density lipoprotein cholesterol targets, but their effects on other lipids are less reported. This study was designed to examine lipid changes in subjects with ST-segment elevation myocardial infarction (STEMI) after two highly effective lipid-lowering therapies. Twenty patients with STEMI were randomized to be treated with rosuvastatin 20 mg QD or simvastatin 40 mg combined with ezetimibe 10 mg QD for 30 days. Fasting blood samples were collected on the first day (D1) and after 30 days (D30). Lipidomic analysis was performed using the Lipidyzer platform. Similar classic lipid profile was obtained in both groups of lipid-lowering therapies. However, differences with the lipidomic analysis were observed between D30 and D1 for most of the analyzed classes. Differences were noted with lipid-lowering therapies for lipids such as FA, LPC, PC, PE, CE, Cer, and SM, notably in patients treated with rosuvastatin. Correlation studies between classic lipid profiles and lipidomic results showed different information. These findings seem relevant, due to the involvement of these lipid classes in crucial mechanisms of atherosclerosis, and may account for residual cardiovascular risk.Randomized clinical trial: ClinicalTrials.gov, NCT02428374, registered on 28/09/2014.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipid Metabolism/drug effects , ST Elevation Myocardial Infarction/drug therapy , Anticholesteremic Agents/therapeutic use , Cholesterol, LDL/blood , Drug Therapy, Combination/methods , Ezetimibe/therapeutic use , Female , Humans , Hypercholesterolemia/drug therapy , Lipids/physiology , Male , Middle Aged , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Rosuvastatin Calcium/therapeutic use , ST Elevation Myocardial Infarction/metabolism , Simvastatin/therapeutic use
2.
J Chromatogr A ; 1583: 136-142, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30509618

ABSTRACT

A capillary electrophoresis with diode array and tandem mass spectrometry detection (CE-UV-MS/MS) method has been developed for the targeted assessment of cardiovascular biomarkers candidates, trimethylamine-N-Oxide (TMAO) and l-carnitine, and creatinine in human urine samples. The dual detection was applied due to the high concentration of creatinine (monitored by UV detection at 200 nm) in relation to TMAO and l-carnitine (quantified by selected reaction monitoring (SRM) mass spectrometry), in human urine. All instrumental parameters, sheath liquid (SHL) and background electrolyte (BGE) compositions were optimized with a pool of urine provided by adult healthy volunteers and evaluated by signal-to-noise ratio (SNR) and peak shape of TMAO. The compositions for the optimized BGE was formic acid at concentration of 0.10 mol L-1, and for SHL was 70:30 MeOH:H2O containing 0.05% (v/v) formic acid, delivered at a flow rate of 5 µL min-1. Limits of detection for TMAO, l-carnitine and creatinine were 0.76, 0.54 and 303 µmol L-1, respectively. Limits of quantification were 2.5, 1.8 and 1000 µmol L-1, respectively. Linearity was evaluated by ANOVA and presented R2 from 0.993 to 0.997. Precision and accuracy were evaluated at three concentration levels. Coefficients of variation (CV) from 1 to 21% were obtained for the intra-day precision evaluation and from 2 to 16% for the inter-day precision evaluation. The recovery ranged from 75 to 116%. Quantitation of TMAO and l-carnitine in infarcted patients urine in comparison to healthy individuals indicated a 2.2 fold increase of TMAO and a 7.0 fold increase of l-carnitine. These results showed the potential applicability of the proposed method for the evaluation of TMAO and l-carnitine in urine within a panel of candidate metabolites in targeted metabolomics studies of cardiovascular diseases among other conditions.


Subject(s)
Biomarkers/urine , Carnitine/chemistry , Electrophoresis, Capillary/instrumentation , Electrophoresis, Capillary/methods , Methylamines/chemistry , Tandem Mass Spectrometry/methods , Adult , Humans , Limit of Detection , Reproducibility of Results , Signal-To-Noise Ratio , Spectrometry, Mass, Electrospray Ionization
3.
Mol Cell Proteomics ; 17(7): 1261-1284, 2018 07.
Article in English | MEDLINE | ID: mdl-29716988

ABSTRACT

The complexity of snake venoms has long been investigated to explore a myriad of biologically active proteins and peptides that are used for immobilizing or killing prey, and are responsible for the pathological effects observed on envenomation. Glycosylation is the main post-translational modification (PTM) of viperid venoms but currently there is little understanding of how protein glycosylation impacts the variation of venom proteomes. We have previously reported that Bothrops venom glycoproteomes contain a core of components that markedly define their composition and parallel their phylogenetic classification. Here we extend those observations to eight Bothrops species evaluating the N-glycomes by LC-MS as assigned cartoon structures and detailing those structures separately as methylated analogs using ion-trap mass spectrometry (MSn). Following ion disassembly through multiple steps provided sequence and linkage isomeric details that characterized 52 unique compositions in Bothrops venoms. These occurred as 60 structures, of which 26 were identified in the venoms of the Jararaca Complex (B. alcatraz, B. insularis, and B. jararaca), 20 in B. erythromelas, B. jararacussu, B. moojeni and B. neuwiedi venoms, and 22 in B. cotiara venom. Further, quantitative analysis of these N-glycans showed variable relative abundances in the venoms. For the first time a comprehensive set of N-glycan structures present in snake venoms are defined. Despite the fact that glycosylation is not template-defined, the N-glycomes of these venoms mirror the phylogeny cladograms of South American bothropoid snakes reported in studies on morphological, molecular data and feeding habits, exhibiting distinct molecular signatures for each venom. Considering the complexity of N-glycan moieties generally found in glycoproteins, characterized by different degrees of branching, isomer structures, and variable abundances, our findings point to these factors as another level of complexity in Bothrops venoms, features that could dramatically contribute to their distinct biological activities.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/chemistry , Polysaccharides/chemistry , Animals , Carbohydrate Conformation , Dimerization , Glycoproteins/chemistry , Isomerism , Mass Spectrometry , N-Acetylneuraminic Acid/chemistry , Phenotype
4.
Mol Cell Proteomics, v. 17, n. 7, p. 1261-1284, jul. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2504

ABSTRACT

The complexity of snake venoms has long been investigated to explore a myriad of biologically active proteins and peptides that are used for immobilizing or killing prey, and are responsible for the pathological effects observed on envenomation. Glycosylation is the main post-translational modification (PTM) of viperid venoms but currently there is little understanding of how protein glycosylation impacts the variation of venom proteomes. We have previously reported that Bothrops venom glycoproteomes contain a core of components that markedly define their composition and parallel their phylogenetic classification. Here we extend those observations to eight Bothrops species evaluating the N-glycomes by LC-MS as assigned cartoon structures and detailing those structures separately as methylated analogs using ion-trap mass spectrometry (MSn). Following ion disassembly through multiple steps provided sequence and linkage isomeric details that characterized 52 unique compositions in Bothrops venoms. These occurred as 60 structures, of which 26 were identified in the venoms of the Jararaca Complex (B. alcatraz, B. insularis, and B. jararaca), 20 in B. erythromelas, B. jararacussu, B. moojeni and B. neuwiedi venoms, and 22 in B. cotiara venom. Further, quantitative analysis of these N-glycans showed variable relative abundances in the venoms. For the first time a comprehensive set of N-glycan structures present in snake venoms are defined. Despite the fact that glycosylation is not template-defined, the N-glycomes of these venoms mirror the phylogeny cladograms of South American bothropoid snakes reported in studies on morphological, molecular data and feeding habits, exhibiting distinct molecular signatures for each venom. Considering the complexity of N-glycan moieties generally found in glycoproteins, characterized by different degrees of branching, isomer structures, and variable abundances, our findings point to these factors as another level of complexity in Bothrops venoms, features that could dramatically contribute to their distinct biological activities.

5.
Mol. Cell. Proteomics ; 17(7): p. 1261-1284, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15258

ABSTRACT

The complexity of snake venoms has long been investigated to explore a myriad of biologically active proteins and peptides that are used for immobilizing or killing prey, and are responsible for the pathological effects observed on envenomation. Glycosylation is the main post-translational modification (PTM) of viperid venoms but currently there is little understanding of how protein glycosylation impacts the variation of venom proteomes. We have previously reported that Bothrops venom glycoproteomes contain a core of components that markedly define their composition and parallel their phylogenetic classification. Here we extend those observations to eight Bothrops species evaluating the N-glycomes by LC-MS as assigned cartoon structures and detailing those structures separately as methylated analogs using ion-trap mass spectrometry (MSn). Following ion disassembly through multiple steps provided sequence and linkage isomeric details that characterized 52 unique compositions in Bothrops venoms. These occurred as 60 structures, of which 26 were identified in the venoms of the Jararaca Complex (B. alcatraz, B. insularis, and B. jararaca), 20 in B. erythromelas, B. jararacussu, B. moojeni and B. neuwiedi venoms, and 22 in B. cotiara venom. Further, quantitative analysis of these N-glycans showed variable relative abundances in the venoms. For the first time a comprehensive set of N-glycan structures present in snake venoms are defined. Despite the fact that glycosylation is not template-defined, the N-glycomes of these venoms mirror the phylogeny cladograms of South American bothropoid snakes reported in studies on morphological, molecular data and feeding habits, exhibiting distinct molecular signatures for each venom. Considering the complexity of N-glycan moieties generally found in glycoproteins, characterized by different degrees of branching, isomer structures, and variable abundances, our findings point to these factors as another level of complexity in Bothrops venoms, features that could dramatically contribute to their distinct biological activities.

6.
Adv Exp Med Biol ; 965: 77-98, 2017.
Article in English | MEDLINE | ID: mdl-28132177

ABSTRACT

Amongst all omics sciences, there is no doubt that metabolomics is undergoing the most important growth in the last decade. The advances in analytical techniques and data analysis tools are the main factors that make possible the development and establishment of metabolomics as a significant research field in systems biology. As metabolomic analysis demands high sensitivity for detecting metabolites present in low concentrations in biological samples, high-resolution power for identifying the metabolites and wide dynamic range to detect metabolites with variable concentrations in complex matrices, mass spectrometry is being the most extensively used analytical technique for fulfilling these requirements. Mass spectrometry alone can be used in a metabolomic analysis; however, some issues such as ion suppression may difficultate the quantification/identification of metabolites with lower concentrations or some metabolite classes that do not ionise as well as others. The best choice is coupling separation techniques, such as gas or liquid chromatography, to mass spectrometry, in order to improve the sensitivity and resolution power of the analysis, besides obtaining extra information (retention time) that facilitates the identification of the metabolites, especially when considering untargeted metabolomic strategies. In this chapter, the main aspects of mass spectrometry (MS), liquid chromatography (LC) and gas chromatography (GC) are discussed, and recent clinical applications of LC-MS and GC-MS are also presented.


Subject(s)
Chromatography, Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry/methods , Metabolomics/methods , Humans
7.
Trials ; 18(1): 601-610, 2017. graf, ilus, tab
Article in English | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1068314

ABSTRACT

BACKGROUND: Early reperfusion of the occluded coronary artery during acute myocardial infarction is considered crucial for reduction of infarcted mass and recovery of ventricular function. Effective microcirculation and the balance between protective and harmful lymphocytes may have roles in reperfusion injury and may affect final ventricular remodeling. METHODS/DESIGN: BATTLE-AMI is an open-label, randomized trial comparing the effects of four therapeutic strategies (rosuvastatin/ticagrelor, rosuvastatin/clopidogrel, simvastatin plus ezetimibe/ticagrelor, or simvastatin plus ezetimibe/clopidogrel) on infarcted mass and left ventricular ejection fraction (LVEF) (blinded endpoints) in patients with ST-segment elevation myocardial infarction submitted to fibrinolytic therapy before coronary angiogram (pharmacoinvasive strategy). All patients (n = 300, 75 per arm) will be followed up for six months. The effects of treatment on subsets of B and T lymphocytes will be determined by flow-cytometry/ELISPOT and will be correlated with the infarcted mass, LVEF, and microcirculation perfusion obtained by cardiac magnetic resonance imaging. The primary hypothesis is that the combined rosuvastatin/ticagrelor therapy will be superior to other therapies (particularly for the comparison with simvastatin plus ezetimibe/clopidogrel) for the achievement of better LVEF at 30 days (primary endpoint) and smaller infarcted mass (secondary endpoint) at 30 days and six months...


Subject(s)
Magnetic Resonance Spectroscopy , Myocardial Infarction , B-Lymphocytes , Metabolomics , Proteomics
8.
PLoS One ; 10(9): e0138686, 2015.
Article in English | MEDLINE | ID: mdl-26390407

ABSTRACT

Cervical cancer is a common type of cancer among women worldwide and infection with high-risk human papillomavirus (HPVs) types represents the major risk factor for the etiopathogenesis of the disease. HPV-16 is the most frequently identified HPV type in cervical lesions and expression of E6 and E7 oncoproteins is required for the uncontrolled cellular proliferation. In the present study we report the design and experimental testing of a recombinant multi-epitope protein containing immunogenic epitopes of HPV-16 E6 and E7. Tumor preventive assays, based on the engraftment of TC-1 cells in mice, showed that the E6E7 multi-epitope protein induced a full preventive anti-tumor protection in wild-type mice, as well as in mice deficient in expression of CD4+ T cells and TLR4 receptor. Nonetheless, no anti-tumor protection was observed in mice deficient in CD8+ T cells. Also, the vaccine promoted high activation of E6/E7-specific T cells and in a therapeutic-approach, E6E7 protein conferred full anti-tumor protection in mice. These results show a potential use of this E6E7 multi-epitope antigen as a new and promising antigen for the development of a therapeutic vaccine against tumors induced by HPV.


Subject(s)
Alphapapillomavirus/immunology , Cancer Vaccines/immunology , Epitopes/immunology , Oncogene Proteins, Viral/immunology , Papillomavirus E7 Proteins/immunology , Repressor Proteins/immunology , Uterine Cervical Neoplasms/prevention & control , Amino Acid Sequence , Animals , Cell Line , Epitopes/chemistry , Female , Interferon-gamma/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data
9.
PLoS Negl Trop Dis ; 7(10): e2519, 2013.
Article in English | MEDLINE | ID: mdl-24205428

ABSTRACT

BACKGROUND: Snake Venom Metalloproteinases (SVMPs) are amongst the key enzymes that contribute to the high toxicity of snake venom. We have recently shown that snake venoms from the Bothrops genus activate the Complement system (C) by promoting direct cleavage of C-components and generating anaphylatoxins, thereby contributing to the pathology and spread of the venom. The aim of the present study was to isolate and characterize the C-activating protease from Bothrops pirajai venom. RESULTS: Using two gel-filtration chromatography steps, a metalloproteinase of 23 kDa that activates Complement was isolated from Bothrops pirajai venom. The mass spectrometric identification of this protein, named here as C-SVMP, revealed peptides that matched sequences from the P-I class of SVMPs. C-SVMP activated the alternative, classical and lectin C-pathways by cleaving the α-chain of C3, C4 and C5, thereby generating anaphylatoxins C3a, C4a and C5a. In vivo, C-SVMP induced consumption of murine complement components, most likely by activation of the pathways and/or by direct cleavage of C3, leading to a reduction of serum lytic activity. CONCLUSION: We show here that a P-I metalloproteinase from Bothrops pirajai snake venom activated the Complement system by direct cleavage of the central C-components, i.e., C3, C4 and C5, thereby generating biologically active fragments, such as anaphylatoxins, and by cleaving the C1-Inhibitor, which may affect Complement activation control. These results suggest that direct complement activation by SVMPs may play a role in the progression of symptoms that follow envenomation.


Subject(s)
Bothrops , Complement Activation , Complement System Proteins/metabolism , Metalloproteases/immunology , Metalloproteases/metabolism , Snake Venoms/enzymology , Animals , Chromatography, Gel , Humans , Mass Spectrometry , Metalloproteases/chemistry , Metalloproteases/isolation & purification , Mice , Molecular Weight
10.
Anal Chim Acta ; 590(2): 166-72, 2007 May 08.
Article in English | MEDLINE | ID: mdl-17448341

ABSTRACT

This work describes the optimization of a cloud point extraction (CPE) method for casein proteins from cow milk samples. To promote phase separation, polyoxyethylene(8) isooctylphenyl ether (Triton X-114) and sodium chloride (NaCl) were used as nonionic surfactant and electrolyte, respectively. Using multivariate studies, four major CPE variables were evaluated: Triton X-114 concentration, sample volume, NaCl concentration, and pH. The results show that surfactant concentration and sample volume were the main variable affecting the CPE process, with the following optimized parameters: 1% (w/v) Triton X-114 concentration, 50 microL of sample volume, 6% (w/v) NaCl concentration and extractions carried out at pH 7.0. At these conditions, 923+/-66 and 67+/-2 microg mL(-1) of total protein were found in the surfactant-rich and surfactant-poor phases, respectively. Finally, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was then used to evaluate those target proteins (alpha(s1)-casein, alpha(s2)-casein and beta-casein) separation as well as to check the efficiency of the extraction procedure, making a fingerprint of those target proteins possible.


Subject(s)
Caseins/analysis , Milk/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Cattle , Octoxynol , Polyethylene Glycols/chemistry , Sodium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...