Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm (Lond) ; 7: 60, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-21167055

ABSTRACT

BACKGROUND: The species Himatanthus drasticus is popularly known in Northeast Brazil as "janaguba" and belongs to the family Apocynaceae. The latex collected from its stem bark is used for several purposes including anti-inflammatory properties and presents among its bioactive constituents the pentacyclic triterpene lupeol. The objective of the present work was to study in vivo and in vitro the lupeol acetate (LA) isolated from the plant latex, in several models of inflammation. METHODS: Male Swiss mice (25-30 g, 6-24 animals per group) were administered with LA, 30 min before the test initiation. In the evaluation of analgesic activity the formalin test was used. The anti-inflammatory activity was evaluated by the following tests: paw edema induced by carrageenan and dextran, and the carrageenan-induced neutrophil migration into peritoneal cavities. Furthermore, the effect of LA on the myeloperoxidase release (MPO, an inflammation biomarker) from human neutrophils was also determined, as well as its antioxidant potential by the DPPH assay. RESULTS: In the formalin test, LA (10, 25 and 50 mg/kg, i.p.) inhibited both the 1st (neurogenic, 0-5 min) and mainly the 2nd (inflammatory, 20-25 min) phase. Naloxone completely reversed the LA effect, indicating the participation of the opioid system. LA also significantly inhibited carrageenan- and dextran-induced paw edemas, as well as the neutrophil migration to the peritoneal cavity evaluated by the carrageenan-induced pleurisia. In this model, the effect of a very low dose of LA (0.1 mg/kg) was potentiated by the same dose of pentoxifylline (PTX), a known TNF-alpha inhibitor. LA (25 and 50 µg/ml) was also very effective in inhibiting MPO released from stimulated human neutrophils, and significantly decreased the number of cells expressing iNOS activity in the paw of mice submitted to carrageenan-induced edema, suggesting a drug involvement with the NO system. CONCLUSIONS: The anti-inflammatory effect of LA probably involves the opioid system, as indicated by the complete blockade of the opioid antagonist naloxone. Furthermore, the LA effect was potentiated by PTX (a TNF-alpha inhibitor). LA also decreased the number of iNOS cells, suggesting the participation of pro-inflammatory cytokines and the NO system in the drug action.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 381(5): 415-26, 2010 May.
Article in English | MEDLINE | ID: mdl-20237771

ABSTRACT

The fresh leaves of Cymbopogon citratus are a good source of an essential oil (EO) rich in citral, and its tea is largely used in the Brazilian folk medicine as a sedative. A similar source of EO is Cymbopogon winterianus, rich in citronellal. The literature presents more studies on the EO of C. citratus and their isolated bioactive components, but only a few are found on the EO of C. winterianus. The objective of the present study was then to study, in a comparative way, the effects of both EOs on three models of convulsions (pentylenetetrazol, pilocarpine, and strychnine) and on the barbiturate-induced sleeping time on male Swiss mice. The animals (20-30 g) were acutely treated with 50, 100, and 200 mg kg(-1), intraperitoneally, of each EO, and 30 min later, the test was initiated. The observed parameters were: latency to the first convulsion and latency to death in seconds. Furthermore, the in vitro effects of the EOs were also studied on myeloperoxidase (MPO; a biomarker for inflammation) and lactate dehydrogenase (LDH; an index of cytotoxicity) releases from human neutrophils. The EOs radical-scavenging activities were also evaluated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The results showed that both EOs were more active on the pentylenetetrazol-induced convulsion model, and C. citratus was even more efficient in increasing latency to the first convulsion and latency to death. Both parameters were potentiated in the presence of a lower dose of diazepam (reference drug) when associated to a lower dose of each EO (25 mg kg(-1)). Besides, their anticonvulsant effects were blocked by flumazenil, a known benzodiazepine antagonist. This effect was somewhat lower on the pilocarpine-induced convulsion, and better effects were seen only with the EOs' higher doses (200 mg kg(-1)). A similar result was observed on the strychnine-induced convulsion model. Both EOs potentiated the barbiturate-induced sleeping time. However, C. citratus was more efficient. Interestingly, both EOs completely blocked the MPO release from human neutrophils and showed no cytotoxic effect on the LDH release from human neutrophils. On the other hand, only a very low or no effect on the DPPH assay was observed with C. winterianus and C. citratus, respectively, indicating that the radical scavenging activity did not play a role on the EOs' effects. We conclude that the mechanism of action of the anticonvulsant effect of the EOs studied is, at least in part, dependent upon the GABAergic neurotransmission. In addition, their effects on inflammatory biomarkers can also contribute to their central nervous system activity.


Subject(s)
Anticonvulsants/pharmacology , Cymbopogon/chemistry , Oils, Volatile/pharmacology , Seizures/drug therapy , Animals , Anticonvulsants/administration & dosage , Anticonvulsants/isolation & purification , Brazil , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Injections, Intraperitoneal , Male , Medicine, Traditional , Mice , Oils, Volatile/administration & dosage , Oils, Volatile/isolation & purification , Plant Leaves , Sleep/drug effects , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...