Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 23(1): 356, 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37805488

ABSTRACT

BACKGROUND: Carboxymethylated Lasiodiplodan (LaEPS-C), Lasiodiplodia theobromae ß-glucan exopolysaccharide derivative, has a well-known range of biological activities. Compared to LaEPS-C, its fractions, Linear (LLaEPS-C) and Branched (BLaEPS-C), have biological potentialities scarcely described in the literature. So, in this study, we investigate the immunomodulatory, antiviral, antiproliferative, and anticoagulant activities of LLaEPS-C and BLaEPS-C and compare them to the LaEPS-C. METHODS: LaEPS was obtained from L. theobromae MMBJ. After carboxymethylation, LaEPS-C structural characteristics were confirmed by Elementary Composition Analysis by Energy Dispersive X-Ray Detector (EDS), Fourier Transform Infrared (FTIR), and Nuclear Magnetic Resonance (NMR). The immunomodulatory activity on cytokine secretion was evaluated in human monocyte-derived macrophage cultures. The antiviral activity was evaluated by Hep-2 cell viability in the presence or absence of hRSV (human respiratory syncytial virus). In vitro antiproliferative activity was tested by sulforhodamine B assay. The anticoagulant activity was determined by APTT (Activated Partial Thromboplastin Time) and PT (Prothrombin Time). RESULTS: LaEPS-C showed low macrophage cell viability only at 100 µg/mL (52.84 ± 24.06, 48 h), and LLaEPS-C presented no effect. Conversely, BLaEPS-C showed cytotoxicity from 25 to 100 µg/mL (44.36 ± 20.16, 40.64 ± 25.55, 33.87 ± 25.16; 48 h). LaEPS-C and LLaEPS-C showed anti-inflammatory activity. LaEPS-C presented this at 100 µg/mL (36.75 ± 5.53, 48 h) for IL-10, and LLaEPS-C reduces TNF-α cytokine productions at 100 µg/mL (18.27 ± 5.80, 48 h). LLaEPS-C showed an anti-hRSV activity (0.7 µg/ml) plus a low cytotoxic activity for Hep-2 cells (1.4 µg/ml). LaEPS-C presented an antiproliferative activity for NCI-ADR/RES (GI50 65.3 µg/mL). A better PT was achieved for LLaEPS-C at 5.0 µg/mL (11.85 ± 0.87s). CONCLUSIONS: These findings demonstrated that carboxymethylation effectively improves the biological potential of the LaEPS-C and their fractions. From those polysaccharides tested, LLaEPS provided the best results with low toxicity for anti-inflammatory, antiviral, and anticoagulant activities.


Subject(s)
Cytokines , Polysaccharides , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Anti-Inflammatory Agents/pharmacology , Anticoagulants/pharmacology , Antiviral Agents/pharmacology
2.
Int Immunopharmacol ; 106: 108573, 2022 May.
Article in English | MEDLINE | ID: mdl-35183035

ABSTRACT

Human respiratory syncytial virus (hRSV) is an infectious agent in infants and young children which there are no vaccines or drugs for treatment. Neutrophils are recruited for airway, where they are stimulated by hRSV to release large amounts of neutrophil extracellular traps (NETs). NETs are compound by DNA and proteins, including microbicidal enzymes. They constitute a large part of the mucus accumulated in the lung of patients, compromising their breathing capacity. In contrast, NETs can capture/inactivate hRSV, but the molecules responsible for this effect are unknown. OBJECTIVES: We selected microbicidal NET enzymes (elastase, myeloperoxidase, cathepsin-G, and proteinase-3) to assess their anti-hRSV role. METHODS AND RESULTS: Through in vitro assays using HEp-2 cells, we observed that elastase, proteinase-3, and cathepsin-G, but not myeloperoxidase, showed virucidal effects even at non-cytotoxic concentrations. Elastase and proteinase-3, but not cathepsin-G, cleaved viral F-protein, which is responsible for viral adhesion and fusion with the target cells. Molecular docking analysis indicated the interaction of these macromolecules in the antigenic regions of F-protein through the active regions of the enzymes. CONCLUSIONS: Serine proteases from NETs interact and inactive hRSV. These results contribute to the understanding the role of NETs in hRSV infection and to designing treatment strategies for the inflammatory process during respiratory infections.


Subject(s)
Extracellular Traps , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Serine Proteases , Extracellular Traps/enzymology , Humans , Molecular Docking Simulation , Respiratory Syncytial Virus Infections/metabolism , Serine Proteases/metabolism
3.
Virus Res ; 276: 197805, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31712123

ABSTRACT

Human respiratory syncytial virus (hRSV) is one of the main etiological agents of diseases of the lower respiratory tract and is often responsible for the hospitalization of children and the elderly. To date, treatments are only palliative and there is no vaccine available. Natural products show exceptional structural diversity and they have played a vital role in drug research. Several investigations focused on applied structural modification of natural products to improved metabolic stability, solubility and biological actions them. Quercetin is a flavonoid that presents several biological activities, including anti-hRSV role. Some works criticize the pharmacological use of Quercetin because it has low solubility and low specificity. In this sense, we acetylated Quercetin structure and we used in vitro and in silico assays to compare anti-hRSV function between Quercetin (Q0) and its derivative molecule (Q1). Q1 shows lower cytotoxic effect than Q0 on HEp-2 cells. In addition, Q1 was more efficient than Q0 to protect HEp-2 cells infected with different multiplicity of infection (0.1-1 MOI). The virucidal effects of Q0 and Q1 suggest interaction between these molecules and viral particle. Dynamic molecular results suggest that Q0 and Q1 may interact with F-protein on hRSV surface in an important region to adhesion and viral infection. Q1 interaction with F-protein showed ΔG= -14.22 kcal/mol and it was more stable than Q0. Additional, MTT and plate assays confirmed that virucidal Q1 effects occurs during adhesion step of cycle hRSV replication. In conclusion, acetylation improves anti-hRSV Quercetin effects because Quercetin pentaacetate could interact with F-protein with lower binding energy and better stability to block viral adhesion. These results show alternative anti-hRSV strategy and contribute to drug discovery and development.


Subject(s)
Antiviral Agents/pharmacology , Epithelial Cells/drug effects , Quercetin/analogs & derivatives , Respiratory Syncytial Virus, Human/drug effects , Virus Attachment/drug effects , Acetylation , Cell Line , Epithelial Cells/virology , Humans , Molecular Dynamics Simulation , Quercetin/pharmacology , Respiratory Syncytial Virus, Human/physiology , Viral Fusion Proteins/metabolism , Virus Replication/drug effects
4.
Virus Res ; 251: 68-77, 2018 06 02.
Article in English | MEDLINE | ID: mdl-29621602

ABSTRACT

Human respiratory syncytial virus (hRSV) is one of the main etiological agents of diseases of the lower respiratory tract, and is often responsible for the hospitalization of children and the elderly. To date, treatments are only palliative and there is no vaccine available. The airways of patients infected with hRSV exhibit intense neutrophil infiltration, which is responsible for the release of neutrophil extracellular traps (NETs). These are extracellular structures consisting of DNA associated with intracellular proteins, and are efficient in capturing and eliminating various microorganisms, including some viruses. hRSV induces the release of NETs into the lung tissue of infected individuals; however, the pathophysiological consequences of this event have not been elucidated. The objective of this study was to utilize in vitro and in silico assays to investigate the impact of NETs on hRSV infection. NETs, generated by neutrophils stimulated with phorbol myristate acetate (PMA), displayed long fragments of DNA and an electrophoretic profile suggestive of the presence of proteins that are classically associated with these structures (elastase, cathepsin G, myeloperoxidase, and histones). The presence of NETs (>2 µg/ml) in HEp-2 cell culture medium resulted in cellular cytotoxicity of less than 50%. Pre-incubation (1 h) of viral particles (multiplicity of infection (MOI) values of 0.1, 0.5, and 1.0) with NETs (2-32 µg/ml) resulted in cellular protection from virus-induced death of HEp-2 cells. Concurrently, there was a reduction in the formation of syncytia, which is related to decreased viral spread in infected tissue. Results from western blotting and molecular docking, suggest interactions between F protein of the hRSV viral envelope and BPI (bactericidal permeability-increasing protein), a microbicidal member of NETs. Interactions occurred at sites important for the neutralization and coordination of the hRSV infection/replication process. Our results showed that the presence of NETs decreases hRSV-induced cellular damage, possibly by directly affecting viral particle capture and/or interfering with the fusion activity of the F protein. These findings broaden the understanding of the role of NETs during hRSV infection.


Subject(s)
Extracellular Traps/metabolism , Host-Pathogen Interactions , Neutrophils/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/metabolism , Cells, Cultured , DNA/analysis , DNA-Binding Proteins/analysis , Epithelial Cells/virology , Extracellular Traps/chemistry , Humans
5.
Int J Biol Macromol ; 95: 63-71, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27851930

ABSTRACT

hRSV is the major causative agent of acute respiratory infections. Among its eleven proteins, M2-1 is a transcription antiterminator, making it an interesting target for antivirals. Quercetin is a flavonol which inhibits some virus infectivity and replication. In the present work, the M2-1 gene was cloned, expressed and the protein was purified. Thermal stability and secondary structure were analyzed by circular dichroism and the interaction with Quercetin was evaluated by fluorescence spectroscopy. Molecular docking experiments were performed to understand this mechanism of interaction. The purified protein is mainly composed of α-helix, with a melting temperature of 328.6K (≈55°C). M2-1 titration with Quercetin showed it interacts with two sites, one with a strong constant association K1 (site 1≈1.5×106M-1) by electrostatic interactions, and another with a weak constant association K2 (site 2≈1.1×105M-1) by a hydrophobic interaction. Ligand's docking shows it interacts with the N-terminus face in a more polar pocket and, between the domains of oligomerization and RNA and P protein interaction, in a more hydrophobic pocket, as predicted by experimental data. Therefore, we postulated this ligand could be interacting with important domains of the protein, avoiding viral replication and budding.


Subject(s)
Biophysical Phenomena , Molecular Docking Simulation , Quercetin/metabolism , Respiratory Syncytial Virus, Human , Viral Proteins/metabolism , Amino Acid Sequence , Computational Biology , Protein Binding , Protein Conformation , Viral Proteins/chemistry
6.
BMC Complement Altern Med ; 16(1): 403, 2016 Oct 22.
Article in English | MEDLINE | ID: mdl-27770779

ABSTRACT

BACKGROUND: Eugenia spp. are used in popular medicine in the treatment of pain, diabetes, intestinal disorders and cough. The aim of the work is to evaluate, ex vivo and in vivo, the anti-inflammatory activity of the hydroethanolic extracts of the leaves of Eugenia aurata (EA) and Eugenia punicifolia HBK (EP) upon neutrophils. METHODS: Ex vivo, isolated human neutrophils were sensitized by Eugenia extracts (0.1-1000 µg/mL) and stimulated by PMA. In these conditions, different neutrophil activities related to inflammatory process were measured: adhesion, degranulation and NET release. Neutrophil viability and tumor line cells were monitored. In vivo, neutrophil influx was evaluated by peritonitis model performed in mice pretreated with different concentrations of Eugenia extracts. Phytochemical profile was assessed by mass spectrometry. RESULTS: Ex vivo, EA and EP (1000 µg/mL) reduced cell adhesion and degranulation, respectively. NET release was inhibited by EA and EP. Anti-inflammatory activities occurred in the absence of cytotoxicity. In vivo, both EA as EP inhibited neutrophil migration. The phytochemical profile revealed that EA contains myricitrin, rutin, quinic acid and quercetin derivatives. EP presents gallic acid, quercetin derivatives, syringic acid, ellagic acid, monogalloyl-glucose, glycosyringic acid, mudanoside B, HHDP glucose isomer and digalloylglucose isomer. EA and EP inhibit neutrophil migration by different pathways. CONCLUSION: Different chemical compositions may explain the anti-inflammatory effects described herein for EA and EP. Both extracts inhibit NET release but only EA reduces cell adhesion whereas EP decreases elastase secretion. This work contributes to the elucidation of cellular mechanisms related to the anti-inflammatory activity for leaves of E. aurata and E. punicifolia HBK.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Adhesion/drug effects , Cell Degranulation/drug effects , Eugenia/chemistry , Extracellular Traps/drug effects , Neutrophils/drug effects , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Cell Survival/drug effects , Inflammation/metabolism , Male , Mice , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...